
United Nations Conference on Trade and Development

E-COMMERCE AND DEVELOPMENT
REPORT 2003

Internet edition prepared by the UNCTAD secretariat

Chapter 4: Free and open-source software:
Implications for ICT policy and development

UNITED NATIONS
New York and Geneva, 2003

UNCTAD/SIDTE/ECB/2003/1

Note

Symbols of United Nations documents are composed of capital letters with figures. Mention of such a
symbol indicates a reference to a United Nations document.

The designations employed and the presentation of the material in this publication do not imply the
expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning
the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation
of its frontiers or boundaries.

Material in this publication may be freely quoted or reprinted, but full acknowledgement is requested,
together with a reference to the document number. A copy of the publication containing the quotation
or reprint should be sent to the UNCTAD secretariat at: Palais des Nations, CH-1211, Geneva 10,
Switzerland.

The English version of the full report and the English, French and Spanish versions of its Overview
section are currently available on the Internet at the address indicated below. Versions in other languages
will be posted as they become available.

http://www.unctad.org/ecommerce/

UNITED NATIONS PUBLICATION

Sales No. E.03.II.D.30

ISBN 92-1-112602-9

UNCTAD/SDTE/ECB/2003/1

Copyright © 2003, United Nations
All rights reserved

95

Free and open-source software (FOSS) challenges our
preconceptions about how software is produced and
distributed. The software industry today generates
yearly revenues in excess of $300 billion. FOSS is
software that has made its source code public and
allows – perhaps even motivates – users to change the
source code and redistribute the derivative software.
Liberating the source code supports broad collabora-
tive development in software production, better
porting1 with other programmes produced by inde-
pendent programmers, and the customization of soft-
ware to meet different commercial, regulatory, cul-
tural and linguistic requirements. Most importantly, in
particular for developing countries, FOSS allows
today’s and tomorrow’s experts and information tech-
nology (IT) leaders to acquire skills and advance their
knowledge rapidly.

Its technological opposite, closed-source or proprie-
tary software, may not support the information and
communication technology (ICT) development proc-
ess as well because it requires a significant upfront
investment in license fees for installation and
upgrades; it is not always adaptable to local concerns;
and its exclusive or even dominant use may not ade-
quately support the local development of the expert
knowledge and skills needed to fully embrace the
information economy. While proprietary software has
its place and role, Governments should consider their
policy position on FOSS in the context of their over-
all agenda and their ambitions of bridging the digital
divide and using ICT for increased, improved trade
and development.

A. Introduction

The hardware that makes modern computing and
communications possible has advanced at an extraor-
dinary rate in the last few decades, and that process is
likely to continue. “Moore’s law”, which is really an
observation of a pattern, states that the capability of

Chapter 4

FREE AND OPEN-SOURCE SOFTWARE:
IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

microprocessors doubles, while their price falls by
nearly one-half, every 18 months.2 This has created an
information-processing ecology where computer
hardware is much more sophisticated and reliable
than software – the instructions that human beings
create for it.

However, there is no Moore’s law for software. While
computing power falls rapidly in price, software that
can make use of that computing power becomes
more complicated, sometimes more expensive and
less reliable, and almost always more difficult to con-
figure and maintain. Yet it is software that constitutes
the fundamental rules for information processing,
and thus for an information economy and an infor-
mation society. Massive processing power connected
by ever-increasing bandwidth is a skeletal infrastruc-
ture. Software determines how information is manip-
ulated, where it flows, to whom and for what reasons.

Developing countries need to define their ICT strate-
gies and make them relevant to the development
process. Policy regarding software use has suddenly
become an important issue because a new choice has
recently become viable: that of FOSS, and with it the
promise of information-enabled development. How-
ever, Einstein once commented that “sometimes one
pays most for the things one gets for nothing”, and
this thought is relevant to the FOSS debate. The
countries and individuals that will profit from FOSS
are those that will strive to formulate their policies in
an informed manner and that will contribute back to
the FOSS knowledge base.

This chapter explains how FOSS and, for compari-
son, proprietary software are created – not in a tech-
nical sense, but in an organizational sense – and why
that matters, for developed and particularly for devel-
oping economies. It suggests that the FOSS process
produces better software that could match the unend-
ing improvements in computer hardware. Like any
product, software is simply the outcome of a produc-

96 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

tion process that combines human effort, inputs, and
capital of some sort in a distinctive way.

The “standard” way of organizing software produc-
tion has been much like the standard way of building
a complex industrial good: a formal division of labour
that uses proprietary knowledge, guarded by restric-
tive intellectual property rights (IPR) and enclosed
within a corporate hierarchy, that guides and governs
the process. Following this approach, today’s software
industry has grown into a colossus estimated to gen-
erate more than $300 billion in annual earnings.

According to industry analyst IDC, the packaged
software industry4 alone is worth almost $200 billion,
while the Gartner Group puts the market for corpo-
rate software at nearly $80 billion.5 Table 4.1 gives
some data on the largest proprietary software produc-
ers. These figures should be taken with caution, as not
all revenues earned come from selling proprietary
software licenses. Indeed, consulting and customizing
software for clients is an important activity as well. In

Table 4.1

Top 10 software companies, ranked
by revenue and market capitalization

Annual
revenue

Market
capitalization

(millions of $) (millions of $)

1 Microsoft 31,375 260,000

2 Oracle 9,487 63,400

3 SAP 7,700 32,300

4 Computer
Associates 3,083 12,400

5 VERITAS 1,531 10,100

6 Electronic Arts 2,489 9,300

7 Intuit 1,373 9,000

8 Adobe Systems 1,194 8,000

9 Symantec 1,328 6,600

10 PeopleSoft 1,949 4,700

11 Competition
to Top 10 3

8,445 28,582

Total 69,954 444,400

Source: UNCTAD estimates based on data from Yahoo Finance (http://
finance.yahoo.com) and Financial Times Market Data and Tools (http://
www.ft.com).

addition to the listed firms, IT heavyweights such as
IBM, Sun Microsystems and EMC, as well as the
major personal computer (PC) hardware producers,
also generate significant revenues from corporate
software services.6

But this is not the only way to organize software pro-
duction. In the last few years, another way of building
software, the open-source process, has gained public-
ity just as the products of this process, such as GNU/
Linux, are gaining market share. In fact, open source
is not a new process. However, it is fundamentally dif-
ferent from the leading alternative, and the success of
FOSS projects demonstrates that complex software
can be built, maintained, developed and extended in a
non-proprietary setting where many developers work
in a highly parallel, relatively unstructured way, often
without direct or immediate monetary compensation.

This chapter establishes and builds on the premise
that the open-source process is a viable mode of soft-
ware production that presents a real choice for firms
and Governments making ICT decisions, in particular
in developing countries. It aims to elucidate the FOSS
phenomenon itself and to clarify some of the issues
involved in choosing between open-source and pro-
prietary software. It presents some of the parameters
and variables that may influence these choices, along
with practical examples of the possibilities and conse-
quences of open-source adoption, using examples
from industrialized countries and highlighting initia-
tives in developing countries. Finally, the chapter pro-
vides a framework for understanding the policy impli-
cations surrounding FOSS, focusing on choices that
the public sector should consider, and on reasons that
might influence its decisions.

B. The process and
the challenge

What is FOSS, and how is it different from proprie-
tary software products sold under conventional intel-
lectual property (IP) regimes? A simple analogy to
any popular cola drink can be helpful.7 A manufac-
turer sells bottles of cola soda to consumers. Some
consumers may choose to read the list of ingredients
on the bottle, but that list of ingredients is surpris-
ingly generic. The manufacturer typically has a propri-
etary “formula” that it does not reveal. The formula is
the knowledge that gives guidelines on how to com-
bine the ingredients in particular proportions, and
perhaps with some “secret” flavouring mix, to pro-

E-COMMERCE AND DEVELOPMENT REPORT 2003

CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT 97

duce something of commercial value. However, the
bubbly liquid cannot be reverse-engineered into its
constituent parts. You can buy cola soda and you can
drink it, but you cannot understand it in a way that
would empower you to reproduce the drink or
improve on it, and to distribute your copied or
improved cola drink to the rest of the world. In order
to guarantee that no entity rediscovers, reverse-engi-
neers or (by more devious means) acquires the cola
formula, the formula is also subject to IP protection.

The basic economics of IPR provides the rationale
for organizing cola soda production this way. The
core problem of IP is supposed to be about creating
incentives for innovators. Patents, copyrights, licens-
ing schemes and other means of restricting knowl-
edge give legal backing to the notion that economic
rents are created and that innovators can and should
appropriate some proportion of those rents as incen-
tives to innovate. Without IP protection, should a
“new and improved” formula be discovered, the per-
son who invents the new formula would have no
defensible economic claim to a share of the profits
that might be made by selling drinks engineered from
the innovation. That person no longer has a financial
incentive to innovate in the first place, so the system
unravels and improved cola soda is never produced.
While the original producer certainly supports and
takes advantage of all available IP protection, it is
aware that the security of its formula, and conse-
quently its business, lies in its physical protection, and
in the entry costs, as well as the manufacturing and
distribution costs, for potential competitors. Thus,
the manufacturer complicates the recipe, divides up
the formula so that certain individuals know only
parts of it while no one knows it in entirety, uses a
good safe, and strives to establish a monopoly market
position.

The production of proprietary computer software is
typically organized under a similar regime, with a par-
allel argument behind it. When purchasing software,
for example, people or companies actually buy a
right-to-use license. They do not own the software in
the sense that they can do with it what they wish. The
right-to-use license permits them to use proprietary
software on a computer, but only under very specific
terms: they cannot reproduce it, modify it, improve it,
or redistribute their own version of the software to
others. Copyright, licenses, patents and other legal
structures provide a layer of legal protection to this
regime, but there is an even more fundamental mech-
anism that stops license holders from doing any of
these things. Just as the cola soda producer will not

release its formula, a proprietary software producer
will not publicize the software’s source code.

Programmers write software source code using a
programming language. Computers run software in
binary code format.

The source code is a list of instructions that make up
the “recipe” for a particular software application,
such as a word processor or a spreadsheet. Software
engineers write source code using a particular pro-
gramming language (like C++ or Fortran) that
experts can read and understand, as well as fix and
modify. To non-experts, source code looks like a
combination of unintelligible language and mathe-
matical and logical expressions.

Before the software can be used on a computer, it
needs to be “compiled”. Compiling is the process of
translating the source code into binary code, consist-
ing basically of series of ones and zeros, after which it
is saved as a separate file. Only then can the compiled
file run on a computer, at which point it is called the
executable binary file or the binary. Most proprietary
commercial software is distributed only as executable
binary files, which a human cannot “read” and make
sense of. Not having access to the source code
restricts users’ ability to modify the software. Reverse
engineering the binary code back into source code is
generally not possible either. Thus, selling only the
executable binary files is a very effective way for pro-
prietary software producers to control what users can
and cannot do with the software they buy.

Proprietary source code is the touchstone of the con-
ventional IP regime for computer software. Proprie-
tary source code is an important reason why the soft-
ware industry can generate sizable revenues and
earnings (see table 4.1). In turn, these companies dis-
tribute part of their profits to the programmers who
write their code and, in this way, provide incentives
for them to innovate.

The open-source process inverts this logic. The
essence of FOSS is that the source code is “free”.
That is, along with the executable binary files that
actually run on the computer, the source code is
released8 for anyone and everyone to examine, use or
modify it. “Free” in this context means the freedom
to run the programme for any purpose, to study how
it works and adapt it to one’s own needs, to redistrib-
ute copies to others, and to improve the programme
and share improvements with the community so that
all benefit (FSF 1996). It does not necessarily mean
that the price is zero, since FOSS can be traded in

98 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

markets just like any other artifact. Programmers
often explain this seeming incongruity in shorthand
such as the following: when you hear about “free”
software, think “free speech”, not “free lunch”; or
“software libre”, not “software gratis”.9

For example, the popular FOSS GNU/Linux distri-
butions are sold on CD-ROM for prices ranging from
several dollars (for discs only) to more than $100 (for
packages that include manuals and help-line access
for a certain period). Often, the executable binary
files can be obtained without paying, but this would
require users to download the files from the Internet
and burn their own installation CD-ROMs. This
approach, too, has a definite cost, involving Internet
access (preferably broadband), as well as a printer, a
CD burner and blank CDs. Whether or not an ICT
business can make money with FOSS is a relevant
issue and is discussed in section E of this chapter.

Building complex software is a difficult and exacting
task because it involves technical and human com-
plexity in both abstract conception and implementa-
tion. People use software in an extraordinarily diverse
technological and cultural matrix that changes almost
continuously. For example, if an auto engineer has to
try to envision the range of conditions under which
people will try to drive a car, the software engineer is
faced with a harder task because much of the techno-
logical environment in which a piece of software will
be used has not even been produced or distributed at
the moment that the software is being written. Aside
from hardware advances, changes in operating system
and networking environments will influence how we
use software designed today. Highways and bridges
simply do not change that fast, and they are not con-
figurable by users in the way that software is.

The software production problem leads unavoidably
to a division of labour. The primary questions are:
What kind of division of labour? How should this be
organized? Putting the right numbers of people in the
correct positions is also important but is really a sec-
ondary problem.

The standard answer to that question is hierarchical
organization in the Fordist10 style. A clear division
between design/architecture and implementation,
segmentation of tasks into subsystems that are then
supposed to “snap” together, and reporting hierar-
chies with command and control from above – these
are all familiar features of industrial organization. An
authority assigns tasks, monitors performance, and
compensates according to measurable indicators of

execution. Controlling the source code becomes a
means of controlling the division of labour.

The open-source process approaches this challenge
from a different direction. Once the source code is
released, the configuration and management of labour
becomes a project of the labourers themselves. The
key elements of the open-source process, as an ideal
type, are voluntary participation and voluntary selec-
tion of tasks. Anyone can join an open-source project,
and anyone can leave at any time. There is no con-
sciously organized or enforced division of labour. It
may be that the underlying notion of a division of
labour does not fit the open-source process very well.
Labour is distributed, and it could hardly be otherwise
in projects that at any given time may involve a hun-
dred or even thousands of programmers. But it is not
really divided in the industrial sense of the term. The
discussion of the Apache and GNU/Linux structures
in section F of this chapter reflects on how individual
motivations translate into collective actions.11

C. A history of software
production

The concept of “free” software is not new. In the
1960s and 1970s, mainframe computers in university
computer science departments and in corporate facili-
ties were principally tools for research. The idea of
free access to the source code for the installed soft-
ware was seen as natural and was often taken for
granted. The FOSS environment was needed to
advance compatibility among different computer sys-
tems for which software had to be reengineered to
account for different hardware – an often time-con-
suming and expensive process. Incompatibility
clashed with the scientific ethic of sharing and accu-
mulation of knowledge, as well as the practical prob-
lem of having to rewrite extensive amounts of code
for different types of computers.

In the United States, AT&T’s Bell Labs led the way by
focusing effort on development of the UNIX operat-
ing system and an associated language for developing
applications, called simply C, that could run on differ-
ent and varied hardware.12 Under the terms of its reg-
ulated monopoly deal with the US Department of Jus-
tice, AT&T could not engage in commercial
computing activities and thus could not sell UNIX for
profit. It seemed almost natural to give away the
source code to universities and others who the Bell
Labs engineers believed could help them improve the
software by finding bugs and fixing the source code.13

E-COMMERCE AND DEVELOPMENT REPORT 2003

CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT 99

Box 4.1

The Free Software Foundation and the General Public License

The central idea of the General Public License (GPL) is to prevent cooperatively developed open/free software source code from being
“enclosed” or turned into proprietary, restrictively copyrighted software. The GPL states that users are permitted to run the programme, copy
the programme, modify the programme through its source code, and distribute modified versions to others. What they may not do is add
restrictions of their own. This is the “viral clause” of GPL. It compels anyone releasing derivative software that incorporates code “copylefted”
under GPL to use the GPL in the new release as well. The Free Software Foundation states: “You must cause any work that you distribute or
publish, that in whole or in part contains or is derived from the Program [any programme covered by this license] or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this license” (FSF 1991).18

Stallman and the FSF created some of the most widely used pieces of UNIX software, including the Emacs text editor,19 the GCC compiler,20

and the GDB debugger.21 As these popular programmes were adapted to run on almost every version of UNIX, their availability and effi-
ciency helped to cement UNIX as the operating system of choice for “free software” advocates and leading academic and research institu-
tions. But the success of the FSF was in some sense self-limiting because of the viral nature of the GPL. Its principal position against propri-
etary software clashed with the utilitarian view of many programmers, who wanted to use pieces of proprietary code together with free code
when it made sense to do that, simply because the proprietary code was technically good. The GPL does not permit this kind of flexibility and
sometimes poses difficult constraints to developers looking for pragmatic solutions to problems.

Thus, UNIX software, typically under copyright,
nonetheless was in most cases distributed for free
along with the source code.

Concrete incentives supported this very casual and
informal treatment of copyright. The behaviour made
sense to the owner of the copyright, since software
was seen at this time not as a profit center itself but
principally as a hook to encourage people to buy
hardware. Give away better software, and you can sell
more computers – so the thinking went. It also made
sense for an innovative programmer to freely give
ideas to the software’s owner. If all or many of these
innovations were incorporated into future software
releases, computer departments would not have to
bother reintegrating improvements piecemeal, but
could simply await the next official release.

The logic of free software began to break down in the
late 1960s. In 1969 the US Department of Justice filed
a massive antitrust suit against IBM, pushing it to
unbundle its “solutions” and begin charging sepa-
rately for software.14 IBM subsequently began to ship
its new mainframes with operating systems that did
not distribute source code. In fact, administrators had
to sign non-disclosure agreements simply to get an
executable copy. This decision represents the birth of
the modern commercial software industry. Microsoft
was founded in July 1975 as a company that for all
intents and purposes simply wrote and sold software.
The arrival of the PC in the early 1980s and its rapid
widespread distribution onto desktops in the business
world reinforced this trend. Software that at one time

had been traded freely among programmers was now
an extraordinarily valuable and lucrative product in its
own right. The development of a separate software
industry and business model had a major impact on
the programming profession. Many of the best pro-
grammers in the United States and elsewhere were
hired away into lucrative positions at spin-off soft-
ware firms.

In reaction to these developments, in 1984 Massachu-
setts Institute of Technology researcher Richard Stall-
man founded a project to revive FOSS activities by
creating a complete set of FOSS utilities and pro-
gramming tools.15 This initiative led to the establish-
ment of the Free Software Foundation (FSF). The
FSF exclusively uses the term “free software” to
denote software that allows the user to run, copy, dis-
tribute, study, change and improve it through access
to the source code. The FSF sees copyright as a
means of imprisoning information and creating une-
qual access, usually along the lines of wealth and pov-
erty. To replace traditional copyright, the FSF has
developed a standard copyright agreement, the GNU
General Public License (GPL), that is often called
“copyleft”.16 GPL is designed to deter programmers
from “closing” the source code of an FOSS computer
programme and stop anyone from bringing it into a
proprietary commercial development environment.17

Box 4.1 discusses the principal position of the FSF in
more detail. Section 3 of this chapter discusses the
legal details of the GPL (under the heading “Intellec-
tual Property Rights”).

100 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

The FOSS process depends heavily on communica-
tions tools to enable modification, innovation and
evolution with regard to the code, with collaboration
between diverse and remote localities. While the
ARPANET was barely sufficient, the rapid spread of
the Internet in the early 1990s accelerated FOSS
activity. The development of the GNU/Linux PC
operating system software began during this period
from honourably modest roots.

In late 1990, Linus Torvalds, a 21-year-old computer
science student at the University of Helsinki, started
building the kernel of a UNIX-like operating system
on his home PC. In autumn 1991, Torvalds released
the source code for the kernel of his new operating
system named GNU/Linux to an Internet news-
group, along with a note asking for comments and
collaborators. The response was unexpectedly good.
By the end of the year, nearly 100 people worldwide
had joined the GNU/Linux newsgroup; many of
these people were active developers who contributed
bug fixes, code improvements and new features.
Through 1992 and 1993 the community of develop-
ers grew at a gradual pace. This was happening at a
time when it was becoming generally accepted within
the broader software community that the era of
UNIX-based operating systems was coming to an end
in the wake of Microsoft’s increasingly dominant
position (Raymond 2000). In 1994 Torvalds released
the official GNU/Linux version 1.0.

While various proprietary versions of UNIX lost mar-
ket share during the mid-1990s, GNU/Linux steadily
acquired market share in the late 1990s and has now
become the only credible competitor to Microsoft in
the PC operating system market. The growth of
GNU/Linux had several causes. Many in the ICT
community found the manner in which proprietary
software companies leveraged their IP (source code)
galling. Others asserted that that the technical quality
of proprietary software was suffering from the corpo-
rate-style development process. It was claimed that,
regardless of how powerful the proprietary software
companies grew, they simply could not employ
enough testers, designers and developers to thor-
oughly debug their own software. At the same time,
proprietary software firms invited only limited inter-
action between advanced users and programmers to
repair and improve a piece of software.

While GNU/Linux grew, the viral nature of the GPL,
as well as the rigour of the FSF’s position, gave rise in
the mid-1990s to an alternative institution for “free”
software, the Open Source Initiative (OSI). The OSI
came into being in February 1998 during a meeting of

several influential IT experts convened in response to
the decision by Netscape to publicize the source code
of its browser. Netscape’s decision was seen as a lead
to follow in promoting the development of FOSS, in
particular vis-à-vis the business and corporate com-
munity. Instead of including a prescribed copyright or
“copyleft” message, the OSI requires entities distrib-
uting FOSS to satisfy the Open Source Definition
(OSD) in its copyright statement.22 While the GPL
requires any redistribution of GPL software to be
released only under GPL (to prevent the “closing” of
the code), the OSD allows redistribution under the
same terms, but does not require it. Certain licenses
that fall under the OSD entitle a programmer to
modify the software and release the modified version
under new terms that include making it proprietary.
Box 4.2 gives an overview of the OSD.

The OSI emphasized economic competitiveness and
aimed its message directly at the mainstream corpo-
rate world.23 The argument was that the open-source
process emphasized high reliability, low cost, and bet-
ter features. Most importantly, a business or Govern-
ment using FOSS could avoid becoming locked into
using software produced by a controlling monopolist.
Open-source users would gain autonomy through
control of their information systems, which were
increasingly the core asset of almost any business.
The OSI initially aimed its message at the CEOs of
the largest multinational companies and emphasized
the various ways in which IT companies themselves
could generate economic profits while freeing source
code. For example, better software would allow hard-
ware manufacturers to sell more computers and other
devices. Customization services that built packages of
open-source solutions, then optimized, maintained
and serviced them for particular business and govern-
ment settings, would be extremely valuable.

The corporate world’s response was immediate. In
January 1998 Netscape announced that it would
release the source code for its World Wide Web
browser as open-source code. By the summer Oracle
and Informix, two of the largest independent soft-
ware vendors for corporate applications and data-
bases, announced that they would port their applica-
tions to GNU/Linux. Over the next several months,
other first-tier independent software vendors, includ-
ing Sybase and the German SAP, made similar
announcements. In the first half of 1999 IBM began
focusing on GNU/Linux as an operating system for
its servers (Berinato 1999, 2000). IBM also became a
major supporter of Beowulf supercomputing (CNET
2000). Major US hardware vendors (Compaq, Dell,
Hewlett Packard, Silicon Graphics) as well as chip

E-COMMERCE AND DEVELOPMENT REPORT 2003

CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT 101

manufacturers Intel and AMD have all made major
commitments to GNU/Linux. For-profit companies
that provide auxiliary services and support for GNU/
Linux, such as Red Hat Software in the United States,
SuSe in Germany and MandrakeSoft in France,
started commercial operations in the late 1990s.
Apache continued to increase its lead in the Web
server market just as the Web itself was exploding in
popularity. In October 2000, Sun Microsystems
released the source code for StarOffice, a software
suite for everyday office use, in order to establish
OpenOffice.org. These and other important or popu-
lar FOSS applications are described in box 4.3.

Microsoft began to see the open-source process in
general, and GNU/Linux in particular, as a major
credible threat to the market presence of its Windows
operating systems, on servers and perhaps even on
desktop PCs.24 A high-level internal Microsoft mem-
orandum issued in 1998 was leaked on 31 October
and became known as “the Halloween Memo”. It
reportedly portrayed FOSS as a direct short-term
threat to revenues and dominant position in some
markets. It was also a long-term strategic issue
because, according to the memo, “the intrinsic paral-
lelism and free idea exchange in OSS [FOSS] has ben-
efits that are not replicable with our current [proprie-
tary] licensing model.”25

The brief history of software, from its open-source
roots to proprietary models and, now, the journey

back to open source, has appeared to take place
mainly in the United States. Indeed, Lancashire
(2001) supports this notion and gives some geo-
graphic data for participating developers. In a sense,
this phenomenon is self-explanatory, as the majority
of FOSS developers will be based in the countries
with the most developed software industries. A look
back at table 4.1 reveals that, of the top 10 global
software firms and their 10 main competitors, only
three are not based in the United States and only one
is in a developing country.26 However, the situation
seems to be rapidly changing, and, judging from the
results of the survey reported in section H of this
chapter, FOSS activities in developing countries may
become increasingly visible in the near future.

By the end of the 1990s the FOSS process had
proved its viability as a means for building complex
software packages that could compete successfully
with proprietary products, and in an increasing
number of IT market segments, from low-end
embedded processing applications to grid-based
supercomputing. Companies as diverse as GNU/
Linux distributor Red Hat and traditional IT giant
IBM have learned how to generate sustained profits
by providing services using various kinds of FOSS. It
is now clear that there are at least two discrete mod-
els for organizing the production of software. Both
appear to be sustainable. Today Governments, busi-
nesses and almost anyone who uses software can
make choices, and will need to make choices,

BOX 4.2

Open source defined

The Open Source Definition (OSD) maintains the following position:

• Source code must be distributed with the software or otherwise made available for no more than the cost of distribution.

• Anyone may redistribute the software for free, without owing royalties or licensing fees to the author.

• Anyone may modify the software or derive other software from it and then distribute the modified software under the same terms.

OSI removes the viral impact of the GPL. Open source does not just mean access to the source code. The OSI “approves” existing licenses
as compliant with the OSD. (A recent count found 21 of these, including the GPL license but also licenses from IT corporate heavyweights
such as IBM, Nokia and Intel.) The OSI aims to bring pragmatism into the development of technically sophisticated software and discards the
FSF ideology. Not everyone shares this goal or sees it as a progressive change. However, it is worth remembering that the philosophical core
of the OSI was in a very different place. One of its founders, Eric Raymond, explained:

“It seemed clear to us in retrospect that the term ‘free software’ had done our movement tremendous damage over the years. Part of this
stemmed from the well-known ‘free-speech/free-beer’ ambiguity. Most of it came from something worse – the strong association of the term
‘free software’ with hostility to intellectual property rights, [with] communism, and [with] other ideas hardly likely to endear themselves to an
MIS manager” (1999a).

102 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

between and among products generated through both
processes of building software.

D. Is FOSS better?

The ultimate issue that the open-source process has
to contend with is achieving quality equal to or supe-
rior to that achieved in proprietary corporate organi-
zations. It can do so in four ways.

1. While affirming that while all software has pro-
gramming errors (bugs) and stability problems,
FOSS can have more developers looking critically
at problems and proposing fixes than any propri-
etary software corporation. In other words,
“given enough eyeballs, all bugs are shallow”
(Raymond 2000).

2. Because FOSS is not hampered by the marketing
and business dynamics of maximizing revenue
from license sales, developers can and do release
bug fixes, patches and new versions more fre-
quently.

3. The installation of proprietary software following
the purchase of a right-to-use license is often tied
to accepting terms and conditions that decline
any liability for damages resulting from its use,
beyond the replacement of the hard disk drive
where the software was installed – clearly not a
hard guarantee of quality with which to compete.

4. Source code availability is in itself an important
product quality. Imagine a transportation com-
pany purchasing a fleet of vehicles that arrive
without the keys to the engine hoods; the keys
would be useless because the company has agreed
in a contract with the manufacturer that it will in
no way attempt to fix or inspect the vehicles’
engines. Such vehicles, like analogous software,
are obviously inferior.

The FOSS process is, however, neither fool- nor fail-
ure-proof. One possible problem is the fragmentation
and forking of projects: a collaborative team may
come to loggerheads over technical issues, or even
personality problems. Fragmentation, or forking,
means that existing development resources are split
between the main and dissenting teams and users may
be faced with unwanted choices and compatibility
issues. Another cited problem is that it is difficult for
users to clearly predict where the development may
be going in terms of future versions, functionalities or
hardware support. Finally, developers and project

team leaders may simply lose interest or reestablish
themselves in a way no longer relevant to the software
project. However, these problems are not the exclu-
sive territory of FOSS. Proprietary software carries its
heavy share of differing standards and compatibility.
Often, good software has been produced by compa-
nies that did not achieve comparable financial results,
thus forcing consumers to switch to products from
better-managed companies. Software support for new
hardware in the proprietary software world is often
conditional on a forced “choice” to upgrade and pay
anew for licenses.

No single software can be unambiguously “better”
than all others. Like any tool, software has certain
characteristics of usability, reliability, flexibility,
robustness and cost. There is no single optimal bal-
ance between these characteristics, and much depends
on the distinctive needs of a particular user. All things
being equal, however, software with fewer serious
bugs and a lower total cost of ownership is generally
preferable on simple economic grounds. Yet even
these criteria are hard to measure. An often-used test
of robustness is the average uptime. Table 4.2 gives an
overview of Web servers with the longest uptime
measured during the week of August 18, 2003, and
the operating system and server software that they
use. It is notable that only one of the 20 most robust
Internet servers runs on proprietary software.

Because bugs appear while software is used in diverse
environments, there may not be precise or reliable
means of estimating the scope or seriousness of a par-
ticular programme’s bugginess. More important is
how quickly a bug, once identified, can be fixed. A
recent study compared bug resolution for three
matched pairs of FOSS and closed-source proprietary
programmes: two Web servers, two operating sys-
tems, and two graphical user interface (GUI) pack-
ages. It found some support for the hypothesis that
open-source bug reports are resolved faster than
closed-source service requests, after controlling in
some ways for the priority and severity of each
request.27 This is a very cautious finding, since it may
be that bugs are uncovered at different rates as well,
and have different characteristics of complexity across
types of software. The result is consistent with the
expectation that users are most highly motivated to
fix what gets in the way of their intended use if they
are empowered to do so by having access to source
code.

Calculations of total costs of ownership (TCO) try to
capture fully the costs of deploying, maintaining and
using a system over the course of its lifespan. Studies

E-COMMERCE AND DEVELOPMENT REPORT 2003

CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT 103

Table 4.2

Web servers with longest average uptime

Average uptime Operating

Rank Site (days)* system Server software

1 www.daiko-lab.co.jp 1569 FreeBSD Apache/1.2.4

2 www.rfj.ac.se 1389 BSD/OS Apache/1.3.26 (Unix)

3 amedas.wni.co.jp 1360 FreeBSD Apache/1.3.26 (Unix)

4 www.alfaoffset.se 1347 BSD/OS Apache/1.3.26 (Unix)

5 www.sisu.ac.se 1320 BSD/OS Apache/1.3.26 (Unix)

6 www.lobomar.se 1319 BSD/OS Apache/1.3.26 (Unix)

7 d1o20.telia.com 1309 BSD/OS Apache/1.3.26 Ben-SSL/1.48 (Unix)
PHP/3.0.18

8 treefort.org 1298 FreeBSD Apache/1.2.6

9 www.treefort.org 1298 FreeBSD Apache/1.2.6

10 www.21stcenturycomputers.com 1283 BSD/OS Apache/1.3.26 (Unix) mod_ssl/
2.8.10 OpenSSL/0.9.6g

11 www.wycomp.com 1282 BSD/OS Apache/1.3.26 (Unix) mod_ssl/
2.8.10 OpenSSL/0.9.6g

12 wwwdir.telia.com 1272 BSD/OS Apache/1.3.26 (Unix)

13 www.21net.ne.jp 1155 FreeBSD Apache/1.3.9 (Unix)

14 www.helmarparts.com 1149 BSD/OS Apache/1.3.23 (Unix)

15 www.lan.ne.jp 1113 FreeBSD Apache/1.2.6

16 dbtech.net 1028 BSD/OS Apache/1.3.27 (Unix)

17 www.icard.com.hk 1023 BSD/OS Apache/1.3.26 (Unix)

18 www.alasearch.com 1015 BSD/OS Apache/1.3.27 (Unix)

19 www.murrayfin.com 1000 BSD/OS Apache

20 www.ehokenstore.com 999 BSD/OS Oracle_Web_Listener/
4.0.8.1.0EnterpriseEdition

* Uptime is the time since the last reboot of the front-end computer or computers hosting a site.
Source: Netcraft http://uptime.netcraft.com/up/today/top.avg.html. Accessed on 28 August 2003.

of TCO for FOSS packages have been controversial,
in part because the cost structure of upgrades and
maintenance is somewhat opaque relative to proprie-
tary pricing. At acquisition, open-source solutions
often cost less, depending on the type of customiza-
tion and additional services that an organization
chooses to buy. Deployment often requires training,
which is sometimes as expensive with FOSS as with
proprietary solutions, or more so. During the period
of use and maintenance, where the bulk of TCO
materializes, FOSS may have significant advantages.
For deployment and use, costs will ultimately depend
on local labour costs, which in many developing
countries may be an advantage for FOSS exploitation.
The availability of source code makes it possible to
use in-house expertise to fix bugs or change configu-
rations, as well as to hire external support from a
competitive market that anyone can enter. What

seems clear is that FOSS can help a business or public
institution avoid getting locked into a vicious circle of
hardware and software upgrades and changes in data
formats that require investing in new license fees and
significant retraining and can provoke major down
time.

Ultimately, the software markets may decide which
process makes better software, provided piracy, anti-
competitive practices and monopolies can be curbed
by government regulators. The steady growth of mar-
ket share for the GNU/Linux operating system indi-
cates that many organizations are betting that the
open-source process will, over time, produce better
solutions for their IT needs. Proprietary software is
rarely seen taking market share away from open-
source solutions where FOSS solutions exist.
The final test of quality is in the numbers, and the

104 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

next section describes FOSS uptake for various ICT
tasks.

E. FOSS within markets

FOSS is very common, but non-expert computer
users may not be very familiar with it because it has
not yet made significant inroads onto the personal
computer desktop in the form of an operating system
or office software applications, such as word proces-
sors or spreadsheets. Typical estimates give the
Microsoft Windows environment just over 90 per
cent of market share, with the rest split between the
Apple Macintosh and GNU/Linux-based systems.
Recent IDC reports indicate that up to 15.5 per cent
of businesses are considering a switch to a GNU/
Linux desktop.28 Whether this will happen is another
issue. However, as many users bring their IT habits
home from the workplace (along with pirated soft-
ware), Linux desktop penetration in firms and gov-
ernment offices may generate additional growth in
the household computer market. The question of
desktop metrics is further complicated by the fact
that, while a large number of GNU/Linux installa-
tions are downloaded from the Internet, it is not clear
whether they get installed at all and, if so, where –

over existing proprietary or FOSS installations, or on
new computers?

Even so, many users are not aware that they may be
regularly using FOSS software and data formats sim-
ply by browsing the Internet and using email, the two
most common household uses of computer technol-
ogy that would be unworkable without FOSS. This
subsection explains why FOSS is increasingly preva-
lent.

The growth and, in some cases, prevalence of FOSS
in important IT sectors is remarkable.29 The open-
source Web server software Apache, which sends
Web pages to the computer of someone accessing a
site, has dominated its market segment since 1996 and
now holds at least twice the market share of its near-
est competitor. A survey published in June 2003 on
market share for active Web servers shows similar
numbers, with Apache at 65.3 per cent.30 Chart 4.1
shows the market shares for Web server software
from 1996 to April 2003.

GNU/Linux has long been popular as an operating
system31 running computers that perform as Web
servers. Recent surveys show that GNU/Linux runs
29.6 per cent of Web servers, while various versions
of Windows run 49.6 per cent, with Sun’s proprietary

Chart 4.1

Market share of Web server software

Source: Netcraft http://www.netcraft.com.

E-COMMERCE AND DEVELOPMENT REPORT 2003

CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT 105

Box 4.3

Examples of Free and open-source software

• Open-source software is often used in mission-critical environments. Many industry standard applications are in fact open-source
programmes. Following is a list of selected notable open-source programmes in addition to GNU/Linux and Apache, which are described
earlier in the chapter.

• The BSD/OS/FreeBSD/NetBSD/OpenBSD35 family of operating systems are UNIX-based, free/open-source operating systems similar
to GNU/Linux. Developed at the University of California-Berkeley in the 1970s, BSD is considered one of the most secure and stable
operating systems and runs a large percentage of Internet servers. The core of Apple’s Macintosh operating system, Darwin, is based
on FreeBSD and has remained in the open-source realm. (See table 4.2 for details of Apple’s open-source activities.)

• GNU was the predecessor of GNU/Linux. It is a free version of UNIX tools created by Richard Stallman in 1984. GNU stands for “GNU is
not UNIX”.

• Sendmail is a free/open-source programme used for routing approximately 40 per cent of the email that travels over the Internet.

• Perl (Practical Extraction and Report Language) is a scripting language freely available for UNIX, MS/DOS, Macintosh, OS/2 and GNU/
Linux, among others. Perl has powerful text-manipulation functions and is used extensively for programming Web electronic forms, and
generally for generating interfaces between systems, databases and users exchanging data on the Internet.

• BIND (Berkeley Internet Name Domain) is a free/open-source programme that allows Internet domain names to be entered as text-based
names instead of as IP addresses, or series of numbers, making it easier for users to reach sites on the Internet.

• The Beowulf Project is a method of connecting computers to form a high-performance computer (Beowulf cluster) that approaches “super-
computer” performance. Since a Beowulf cluster can be developed from common, off-the-shelf computers utilizing FOSS, a Beowulf
cluster “super-computer” can be built and implemented at a fraction of the cost of other systems with similar computing capacity.

• OpenOffice.org is a software suite that provides basic office and administrative automation. An offshoot of Sun Microsystems’ StarOffice,
OpenOffice runs on all major operating systems, including MS Windows, as its cross-platform functionality is based on open XML
standard file formats.

• GNOME and KDE are desktop GUIs that run on top of GNU/Linux and UNIX, providing user-friendly computing to the non-programmer
open-source community.

• MySOL is a relational database server.

• The Gimp is a graphics programme widely distributed with GNU/Linux. (A version for the Windows operating system also exists.) It is
sometimes called “free Photoshop”.

version of UNIX (Solaris) running 7.1 per cent and
various BSD derivatives (which are, like GNU/Linux,
open-source) running 6.1 per cent.32

In the last few years GNU/Linux has increasingly
penetrated both the high and low ends of the enter-
prise market for operating systems. Nearly 40 per cent
of large American companies and 65 per cent of Japa-
nese corporations use GNU/Linux in some form,
and it may now run as much as 15 per cent of the
large server market overall (Business Week 2003). A
study from October 2002 found that 59 per cent of
software developers surveyed internationally expected
to write applications for GNU/Linux at some point
during the next year.33 The EU-sponsored FLOSS
survey (Berlecon/III 2002) found 43.7 per cent of
German companies and 31.5 per cent of British com-
panies using FOSS. It is notable that, according to

several studies, Internet service providers (ISPs), large
companies, small companies, and CIOs in financial
services, retail and the public sector all believe that
GNU/Linux use is set to increase rapidly both in
their own organizations and in the market as a whole
over the next several years.34 Box 4.3 gives a more
detailed overview of important FOSS available and in
use today.

Amazon, E*TRADE, Reuters and Merrill Lynch are
examples of multinational companies that have
recently switched to GNU/Linux and Apache Web
server software for their back-end computer systems.
A large proportion of US Government agencies and
departments, including the Department of Defense,
the Department of Energy, and the National Security
Agency, works with FOSS. National, state and munic-
ipal governments from China to Germany to Peru are

106 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

considering, and in some cases mandating, the use of
FOSS for e-government applications. A fuller
description of developing countries’ involvement in
FOSS is presented in the survey in section H of this
chapter.

E. The rationale for FOSS

While a convincing argument has been made for why
someone would wish to use FOSS, another important
question is why anyone would want to produce FOSS,
and how this motivation translates into coherent out-
put. Before discussing the motivations, it is worth
considering some real-world indications and evi-
dence.

1. Open evidence

Users rarely buy only software licenses; they also buy
services related to the software. Organizations and
firms normally buy solutions involving a combination
of software, hardware and services. The services sur-
rounding software products range from consulting,
implementation, support, and training to application
administration. In fact, even Microsoft has reportedly
conceded that, in line with the findings of a survey by
the Gartner Group, the cost of software licenses
amounts to only 8 per cent of the total cost of owner-
ship, and the other 92 per cent reflects the costs of
installation, maintenance, management, and repairs
after failures.36 In what seems to be a matching esti-
mate, Raymond (1999b) asserts that a very small por-
tion, perhaps even less than 10 per cent, of software is
developed for prepackaged retail sale. The outstand-
ing majority consists of in-house code that is so
highly integrated with firms’ business and IT environ-
ments that reusing or copying the code “as is” is diffi-
cult or unfeasible.

The conclusion is clear: The majority of software
development does not make money by selling licenses
for prepackaged software. The opposite perception is
encouraged by the fact that prepackaged proprietary
software generates large revenues; however, it does so
because a few producers can charge monopoly prices.
For an IT services firm, the extra earnings gained by
getting a commission from reselling a proprietary
license may be so marginal that they may not signifi-
cantly influence their choice of a proprietary over an
FOSS platform for a particular client account. What

should influence their choice is how precisely they can
respond to clients’ demands and the level of customiz-
ability, ease of maintenance and robustness a platform
has to offer. From the point of view of developing
countries, this issue alone is sufficient to ease worries
that using FOSS platforms will diminish business
opportunities.

Supporting this notion is the fact that a large part of
the IT industry is developing FOSS-based activity.
IBM is now a major champion of open-source soft-
ware, after publicly making in 2001 a $1 billion com-
mitment to developing technology for and reconfigur-
ing central parts of its business models around GNU/
Linux and other open-source programmes. Already in
2002, IBM announced that it had earned revenues in
excess of $1 billion from sales of Linux-based soft-
ware, hardware and services.37 Other technology lead-
ers, including Hewlett-Packard, Motorola, Dell, Ora-
cle, Intel and Sun Microsystems, have made major
commitments to FOSS for operating systems, embed-
ded systems, cluster supercomputing, and corporate-
class applications software. Table 4.3 gives a more
detailed overview of mainstream IT firms’ involve-
ment in FOSS.

2. Supply motivations

Software is a digital product that can be copied an infi-
nite number of times at zero cost, with no decrease in
quality or usefulness, and is thus purely non-rival in
economic terms. Freeing the source code makes soft-
ware non-excludable as well, and as a result software
acquires the characteristics of a public good.38 Yet
public goods normally encourage free riding. Why
would people voluntarily contribute to a public good
that they could otherwise use as free riders? If every-
one has the same attitude, the system should unravel
to the point where no one makes substantial contribu-
tions and the good never gets produced. Why do
highly talented programmers choose to allocate sub-
stantial portions of their time and intellect, both of
which are scarce and valuable resources, to a joint
project for which they will not be directly compen-
sated?

A great deal of effort has gone into mapping the moti-
vations of developers. Certain studies affirm that these
can be accounted for by standard economic theory.
An open-source programmer’s code is often precisely
associated with the author and well recognized, pro-
viding a certain level of ego gratification. Personnel
managers from commercial companies frequently
review contributions to and participation in FOSS

E-COMMERCE AND DEVELOPMENT REPORT 2003

CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT 107

Table 4.3

IT industry leaders’ involvement in FOSS

Company FOSS involvement

IBM IBM hosts a variety of open-source projects, all under open-source licenses approved by the OSI.
http://www-124.ibm.com/developerworks/oss/

Microsoft Microsoft proposes a model of “shared source“ as an alternative to open source.
http://www microsoft.com/licensing/sharedsource/
Microsoft Interix technology, now integrated into Windows Services for UNIX 3.0, provides an environment,
under GPL license, to run both Windows and UNIX applications on a single system.
http://www.microsoft.com/windows/sfu/howtobuy/default.asp

Pricewaterhouse-Coopers FOSS topics are discussed on the site from a consulting perspective.
http://www.pwcglobal.com/Extweb/service.nsf/docid/30F66202E467710C85256B990072FC55

EDS EDS has occasional FOSS activities. Dynamator, a server page maintenance programme developed by an
EDS programmer, is FOSS.
http://www.eds.com/about_eds/homepage/home_page_dynamator.shtml

Oracle Oracle does not have visible FOSS activities but has ported database products for Linux.
http://www.oracle.com/linux/

Hewlett-Packard Hewlett-Packard hosts several FOSS projects.
http://opensource.hp.com/

Accenture The topic of FOSS is discussed on the site from a consulting perspective.
http://www.accenture.com/xdoc/en/ideas/outlook/pov/open_source_pov_rev.pdf

SAP The mySAP Business Suite runs on Linux.
http://www.sap.com/solutions/netweaver/linux/
SAP DB is a free/open-source enterprise database.
http://www.sapdb.org

Computer Associates Computer Associates is a co-founder of Open Source Development Lab.
http://www.osdl.org

Hitachi Hitachi participates in FOSS projects.
http://oss.hitachi.co.jp/index-e.html

Sun Microsystems Sun sponsors a number of FOSS projects, including OpenOffice.org and NetBeans.
http://www.sunsource.net

Compuware Compuware has no FOSS activities, but the development environment shipped with its OptimaIJ product is
based on the open-source integrated development environment (IDE) NetBeans.
http://www.compuware.com/products/optimalj/1811_ENG_HTML.htm

BMC Software BMC is cooperating with The Open Group to develop an open-source Management Service Broker.
http://www.bmc.com/corporate/nr2001/032701_2.html
http://www.opengroup.org/

EMC EMC has no visible FOSS activities, but development of FOSS is part of the job descriptions for currently
open positions. It has also ported certain products for Linux.
http://www.emc.com/technology/auto_advice.jsp

Cadence Design Cadence supports open exchange among in-house developers, commercial developers and academia. Its
Systems TestBuilder C++ test bench class library is available through an open-source license.
http://www.testbuilder.net
Cadence contributes to the OpenAccess coalition for standard electronic design database.
http://www.cadence.com/feature/open_access.html and http://OpenEDA.org

Adobe Adobe has occasional FOSS activities, mostly focusing on Python plug-ins for Adobe products.
http://opensource.adobe.com/

Silicon Graphics SGI SGI supports a large number of open-source projects.
http://oss.sgi.com/

Apple Darwin is the core of Apple’s Mac OS X operating system. Based on FreeBSD, Darwin remains in the open-
source domain realm under Apple Public Source License. A number of other open-source projects are
supported.
http://developer.apple.com/darwin/

108 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

projects when assessing employability. Established
open-source authorities may get access to financing
and attract attention from venture capital. Former
open-source programmers established both Sun and
Netscape. Thus, career incentives may figure promi-
nently in motivating programmers to contribute.
These phenomena, often called “signaling incen-
tives”, can appear when inputs may be judged and
rewarded in one or multiple future periods even when
a contract is lacking at the present (Lerner and Tirole
2000 and 2001; Holmström 1999).

Raymond (1999b) explains the open-source process
as a gift economy whereby programmers make volun-
tary contributions as a reaction to abundance rather
than scarcity, the abundance being that of knowledge
and information as well as of network bandwidth and
computing power. This implies the existence of win-
neutral (i.e. benefit at no cost) as well as win-win
(mutual benefit) and win-lose (benefit at a cost, where
the cost needs to be financially reimbursed) situations.

Another way of rationalizing the existence of FOSS is
the so-called cooking-pot model (Ghosh 1998). The
model suggests that FOSS comes about as a direct
result of the distributed structure of the Internet,
where users do not want to pay or charge for goods
and services that thrive on the Internet. The cooking-
pot model is not a barter economy, as it does not
require bilateral transactions. Further, discarding the

equality between costless and valuable makes sense of
the fact that the millions of people on the Internet
publish on matters interesting them and contribute to
communities, including those involved in FOSS soft-
ware. While they will not get any cash in return, their
“payment” might come in the form of complemen-
tary contributions from others, or the valuable out-
comes of esteem and attention. Indeed, it has been
suggested that what is increasingly scarce today is
attention, while other factors, such as information
and even financing, are becoming more abundant, if
unevenly distributed (Goldhaber 1997).

Other studies have focused more closely on the actual
FOSS developer community. The modal GNU/Linux
developer appears to be a person who feels part of a
technical community, who is committed to improving
programming skills, facilitating his or her own work
through better software, and having enjoyable and
rewarding intellectual and social experiences. This
person recognizes the opportunity costs of open-
source programming in terms of time and money
invested, but simply does not seem to value these
(particularly in financial terms) as much as main-
stream professionals do.39 Individual learning, work
efficiency, and collective, or “pro-social”, motivations
are the main reasons why these programmers choose
to contribute time and effort to FOSS projects.
Box 4.4 describes two recent surveys on developers’
motivations.

Box 4.4

What motivates open-source developers?

A 2001 survey by the Boston Consulting Group produced additional insights by segmenting developers’ responses into four characteristic
groups.40 About a third of the respondents to this survey are “believers” who say they are strongly motivated by the conviction that source
code should be open. A quarter are “fun-seekers” who contribute code mainly for intellectual stimulation. About a fifth of respondents are
“professionals” who work on open source because it helps them in their jobs. Another fifth are “skill enhancers” who emphasize the learning
and experience they get from open-source programming. The survey also found that open-source programmers seem to cluster heavily (70.4
per cent) in the age range between 22 and 37, with about 14 per cent being younger or older. Most are not novices: more than half are pro-
fessional programmers, system administrators or IT managers. (Only 20 per cent self-identify as students.)

A 2002 study sponsored by the European Union (FLOSS) surveyed about 2,800 developers online.41 This survey reveals a group that is pre-
dominantly male and mostly under age 40. About a third of the respondents have university bachelor’s degrees, another 28 per cent have
master’s degrees, and 9 per cent have a doctorate. The vast majority of respondents work in the IT sector for private companies or universi-
ties or are self-employed. Students make up 17 per cent of the population and unemployed developers about 4 per cent. They are widely
distributed among many countries in the world, not predominantly in the United States, and exhibit high mobility as they move across national
borders to work in different settings.

Each of these surveys should be approached with care, as the samples from which they gather data may be skewed by distribution of the
survey instrument, inadequate response levels, and other kinds of selection bias that make accurate interpretation difficult.

E-COMMERCE AND DEVELOPMENT REPORT 2003

CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT 109

3. From motivation to output

The research on individual motivation provides inter-
esting evidence on the question of how developers
think about their individual choices. But individual
motivations do not by themselves add up to large-
scale, coordinated action. The organization of the
community has received less attention but is just as
important. The vast majority of open-source projects
involve a small number of developers. These projects
typically depend on intensive communication and the
persuasiveness of the de facto project leader to coor-
dinate the work of the group. More explicit and for-
mal governance structures have evolved to manage
the larger projects.

What is distinctive about these governance structures
is a subtle twist on decision-making authority and its
relationship to hierarchy. The notion that there is no
hierarchy in the division of labour lies at the heart of
the open-source process. However, there can be a
hierarchy of decision-making for vetting and incorpo-
rating the results of distributed work. Yet participa-
tion in that decision-making hierarchy remains volun-
tary for any individual developer.

The governance of the Apache FOSS project is one
example. Starting with just eight people in early 1995,
the Apache Group grew quickly to several dozen core
developers working in loose association with hun-
dreds of other developers who occasionally contrib-
uted ideas, code and documentation to the project.
Decisions early on were made by informal email-
driven consensus. This informal system came under
pressure with increasing numbers of participants, and
with the “burstiness” of participation: developers
might be doing something else for a week before they
could come back to their Apache work. However, the
progress of the project as a whole could not be held
up to wait for everyone’s “bursts” to coincide.

The answer in practice was a system of email voting
based on a minimum quorum consensus rule.42 In
1999 the Apache Group formally incorporated as a
non-profit corporation, The Apache Software Foun-
dation.43 It now serves as an organizational and man-
agement umbrella for a range of Web-relevant open-
source projects (including the original Apache Web
server as well as Jakarta, Perl, TCL and others).

GNU/Linux, as it expanded, developed a semi-for-
mal organization for decision making about code.

Clearly differentiated role structures exist within the
GNU/Linux community. As the programme and the
community of developers grew, Torvalds delegated
responsibility for sub-systems and components to
other developers, who became known as lieutenants.
Some of the lieutenants onward-delegate responsibil-
ity to “area” owners whose work has a narrower
focus. The organic result is what looks and functions
very much like a hierarchical structure where decision
making flows through a fairly well defined pyramid.
The GNU/Linux pyramid works imperfectly but is
evolving through trial and error towards greater scala-
bility.

G. FOSS and development

The digital era presents significant opportunities and
real risks for developing countries. One risk is being
sidelined from software trends that drive the increas-
ingly digital global economy. The combination of
rapid increases in hardware processing power at
declining prices and positive network externalities,
whereby the value of the network increases dispro-
portionately as it grows, suggests that markets can
grow intensively and dramatically within the devel-
oped world, without necessarily having to expand
geographically into developing countries.

As developed economies increasingly create net-
worked purchasing and production systems that
depend on advanced ICT infrastructure, countries
that are not connected on favourable terms, and busi-
nesses within those countries, may be deeply disad-
vantaged. International organizations and non-gov-
ernmental organizations are increasingly computer-
enabled as well and may interact better with countries
and organizations in the developing world that are
similarly ICT-enabled.

This implies that decisions Governments make about
procurement, standard setting and ICT adoption,
technology investments, and training are critical. Over
the past five years Governments around the world
have begun considering legislation that would require
the use of FOSS when it provides a feasible alterna-
tive to proprietary software. This phenomenon has
been particularly pronounced in the developing world
as these nations, struggling with limited IT budgets,
look to FOSS solutions. In addition, proponents of
FOSS have articulated its advantages in dealing with
the mounting security concerns around networks and

110 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

in providing public data accountability and transpar-
ency. Should there be any doubts as to the functional-
ity of the data formats or processing software for crit-
ical government activities such as taxation or voting,
independent experts may be requested to, without
restrictions, inspect the open code and data formats.
Governments have also considered the potential con-
tribution of FOSS deployment to nascent local soft-
ware industries and ICT human resource capacity
building, as well as its potential spillover effects into
other sectors of the economy.

Developing-country public sectors have begun to
embrace the use of FOSS and encourage it in the pri-
vate sector for a number of observable motivations.
These motivations can be loosely grouped into three
clusters: a desire for independence, the drive for secu-
rity and autonomy, and new IPR enforcement. This
section considers each of these motivating factors in
turn.

1. Towards ICT sustainability

FOSS advocates have pointed out the technological
dependency created by reliance on a few major soft-
ware suppliers located in other countries. The policy
debate was greatly accelerated when Peruvian Con-
gressman Edgar Villanueva Nuñez, together with
Congressman Jacques Rodrich Ackerman, tabled a
bill on “Use of Free Software in Government Agen-
cies” on 9 April 2002. Bill 1609, as it is called, would,
if enacted, require all State agencies to use exclusively
FOSS software in their computing systems and equip-
ment. The Peruvian case is discussed further under
“Security and Autonomy” (later in this section) and in
box 4.6. A significant number of developing-country
Governments have undertaken initiatives to explore
FOSS. In South Africa, the Government Information
Officer’s Council has cited reduced costs, decreased
technological dependency, promotion of universal
ICT access, avoidance of proprietary software vendor
lock-in and customizability to local languages and cul-
tures as the main benefits of adopting open-source
software as part of its e-government strategy.44 In
India, the Department of Information Technology,
Ministry of Communication and Information Tech-
nology, is encouraging GNU/Linux and open-source
software as standards in academic institutions, while
the state of West Bengal is reviewing its FOSS
agenda.45 China is also examining the issue and has
been providing strategic support for Red Flag Linux,
a local distributor.46 In the Brazilian state of Pernam-
buco, the world’s first-ever law regarding the use of
open-source software was passed in March 2000.47

An extensive list of FOSS policies and initiatives is
provided in the survey presented in section H of this
chapter.

Countries are interested not only in the potential
long-term cost savings of FOSS solutions, but also in
precisely where IT expenditures are actually going.
Governments should minimize their reliance on sin-
gle suppliers. FOSS also helps avoid getting locked
into financially disadvantageous long-term relation-
ships with particular proprietary software vendors or
producers. While the jury is still out on the cost
debate, the use of free software means that installa-
tion, training, support and maintenance can be flexi-
bly contracted out to a range of local suppliers com-
peting on quality and price. With the use of FOSS,
more domestic talent can participate in the develop-
ment of local software. This makes it possible to keep
IT expenditures, as well as experts and promising
young talent, at home and contributing to a nascent
local software industry. At the same time there is a
motivation to upgrade the country’s human resource
capacity and technological skill base.

FOSS eliminates the national-level economic loss
resulting from duplication of work, in particular if
such development has been done in a public or aca-
demic institution. Sharing applications and their
source code across ministries, government offices and
schools and universities can be a public policy stance.
A variety of positive spillover effects to other technol-
ogy and non-technology sectors are also possible and
are discussed in box 4.5.

Finally, promoting FOSS can have an anti-monopolis-
tic effect on the IT market and industry in a country.
Network externalities in the software industry,
whereby the value of a product such as a word proc-
essor or operating system increases with the number
of people using it, may result in monopolies with infe-
rior products. The prevalence of a particular software
application is seen as a dominant quality in itself, and
this can motivate developers to port new pro-
grammes or upgrades specifically to it, regardless of
its underlying technical qualities. FOSS allows anyone
to provide IT services and thus reduces barriers to
entry. While a certain open-source programme may
come to dominate its market niche, no particular
institution or business can use it to build a monopoly
market position.

Hesitation, in particular among accustomed users,
should be expected if a Government decides to move
away from existing proprietary solutions. However,
ease of use, bred through familiarity, may seem less

E-COMMERCE AND DEVELOPMENT REPORT 2003

CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT 111

Box 4.5

Open-source processes outside the software sector

Two notable areas where open- and free-source philosophies are making inroads are publishing and biology, in particular in the research
work on the human genome.

Open-source publishing is often referred to as open-content publishing. Open content is the content production process together with the
content itself, when it is distributed according to an open-content license agreement. The basis for open-content licensing is that content is
freely available for modification, use and redistribution, with certain restrictions aimed at supporting its freedom from the threat of proprietary
closing (Keats 2003). A number of open-content directories and projects have sprung up,48 inspired in part by dissatisfaction among teachers
and lecturers with the rising cost and decreasing quality of new editions of textbooks.49 In the development context, given the cost of content
as well as the under-funding of schools and lack of expertise in many countries, collaborative development of content in an open environment
and process could improve access to high-quality, locally relevant content. Open content has great potential to contribute to a “knowledge
commons” that can positively affect economic development. Governments and the UN system could contribute to a reusable global body of
knowledge by declaring many of their publications, documents and other content, produced with members’ contributions, government or pub-
lic funds, to be open content.

The FOSS programme that allowed the public Human Genome Project at the Sanger Institute to assemble the genome, in parallel with Cel-
era’s commercial effort, ensured that the human genome data would remain in the public domain.50 Jim Kent wrote the programme to stop
the genome data from getting locked up by commercial patents. This situation demonstrated the need to think about more than just open-
source code; in the scientific community there is awareness of the importance of open data and procedures, as replicability is the only guar-
antor of scientific validity.51 However, there have been assertions that without a public open-source competitor, the human genome may still
be in the proprietary domain, available to those capable of paying for a subscription to what many consider the common knowledge of
humanity.

Other organizations have been mimicking the FOSS model as well. Bioinformatics.org affirms in its mission statement that it aims to “promote
freedom and openness in the field of bioinformatics [and] hopes to lower the barrier to entering and participating in the field of bioinformatics,
as access to cutting-edge resources can be prohibitively expensive for those working individually, in small groups, at poorly funded institu-
tions or in developing nations”.52 In another example, the Alliance for Cellular Signaling will build a virtual cell that will allow scientists to per-
form experiments completely on their computers. Replicating the FOSS process, several laboratories will act as central coordinators, and
hundreds of researchers are expected to contribute over the Internet..53

advantageous when new licenses have to be pur-
chased for upgrades that in turn often require corre-
sponding upgrades in hardware.

2. Security and autonomy

Security of public data is a leading concern of Gov-
ernments, particularly in the wake of recent world-
wide computer virus attacks and growing fears of
cyberterrorism and cybercrime, as well as spyware.54

At a minimum, introducing diversity into the base of
functioning software code reduces the possibility of
catastrophic failures caused by viruses that attack a
software monoculture. Finally, because Governments
cannot choose their customers or citizens, it follows
that they should not oblige them to use costly propri-
etary software and closed data formats.

The need for open public data formats is directly rele-
vant to calls for increased accountability and transpar-
ency in public sector governance. As was mentioned
earlier, Peruvian Congressman Edgar Villanueva
introduced a bill to mandate the use of FOSS in pub-
lic administration. In an exchange of letters with
Microsoft Peru,55 he stressed that, to guarantee free
access by citizens to public information, it is indispen-
sable that the encoding and processing of data not be
tied to any single provider. The use of standard and
open formats guarantees free access. If one is to guar-
antee the permanence of public data, the usability and
maintenance of software should not depend on the
goodwill of suppliers or on conditions imposed by
them in a monopoly market. At a fundamental level,
nations must, in order to guarantee national security,
be able to rely on systems without elements control-
led at a distance. Box 4.6 provides a summary of the

112 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

positions taken in response to Microsoft’s discussion
of the disadvantages of legislating against proprietary
software use in Peru’s public institutions.

The need to have public and open standards for soft-
ware applications and data files that handle public
information is now universally accepted. Software
that is used to handle public records, taxation or, in
the future, voting may need to follow FOSS stand-
ards. Further, Governments need to maintain certain
key public data and be accountable for its processing.
With closed-source proprietary software and data file

formats, should the vendor choose to discontinue
support for technical reasons (e.g. because maintain-
ing backward compatibility is burdening the source
code of current and new versions) or financial rea-
sons (e.g. an unsatisfactory revenue stream or bank-
ruptcy), public offices may find themselves forced to
upgrade hardware or software (often both) or convert
to another system, with the resulting cost implica-
tions.

A study on government use of FOSS in Europe (Ber-
lecon/III 2002) expresses many of the same concerns

Box 4.6

Summary of main points of E. Villanueva’s letter to Microsoft Peru

Bill Number 1609 (The Use of Free Software in Public Administration), introduced by Congressman Edgar Villanueva, is intended to require
the use of FOSS in all government systems, when there is a choice between FOSS and proprietary software.

Congressman Villanueva’s letter to Microsoft Peru (8 April 2002) expressed the following principles:

• To guarantee free access by citizens to public information, it is indispensable that the encoding of data not be tied to a single provider.
The use of standard and open formats guarantees free access.

• To guarantee the permanence of public data, the usability and maintenance of the software should not depend on the goodwill of suppliers
or on monopoly conditions imposed by them.

• To guarantee national security, the State must be able to rely on systems without elements controlled from a distance. Systems with open-
source code allow the State and citizens to inspect the code themselves and check for back doors and spyware.

In response to the concerns raised by Microsoft Peru, Congressman Villanueva argues the following:

• The bill does not meddle in private-sector transactions and protects equality under the law (i.e. nobody is denied the right to offer these
goods to the State). There is no discrimination, since the bill specifies only how the goods are to be provided, not who has to provide
them. Proprietary software companies are free to offer FOSS solutions to the Government in a competitive tender.

• The bill stimulates competition, since it tends to generate a supply of software with better conditions of usability, and to enhance existing
work, in a process of continuous improvement.

• Proprietary software creates mainly “technical tasks of little aggregate value” in countries like Peru; free and open software creates more
technically qualified employment, stimulates the market, and increases the shared fund of knowledge, opening up service alternatives to
the benefit of producers, service organizations and consumers.

• As for security, bugs in free software are rarer and are fixed much more quickly than in proprietary software.

• Free software in no way implies ignorance of intellectual property laws; the great majority of free software is covered by copyright.

• The bill is not mistaken regarding the costs of free software: while the possibility for savings in payments for proprietary software licenses
is mentioned, the foundations of the bill clearly refer to the fundamental guarantees to be preserved (free access, permanence and
security) and the stimulus to local technological development.

• The use of free software contributes significantly to reducing life-cycle costs: support and maintenance can be freely contracted out to a
range of suppliers competing on quality and cost for installation, enabling, support and maintenance; maintenance carried out is easily
replicable without incurring large costs, since modifications can be included in the common fund of knowledge; and the huge costs
created by non-functioning software are reduced by using more stable software, which is one of the virtues of free software.

• Migration to new systems is in fact cheaper when FOSS is used, since all data are stored in an open format.

• Interoperability is guaranteed as much by standard formats (as required by the bill) as by the possibility of creating interoperable software
given the availability of the source code.

E-COMMERCE AND DEVELOPMENT REPORT 2003

CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT 113

as Congressman Villanueva. It argues that FOSS, by
its nature, better fulfils government responsibilities
such as satisfying the public’s right to access certain
information and know how that information is proc-
essed, and maintaining the security and permanence
of public data.

Other developing countries have also expressed dis-
satisfaction with the proprietary software develop-
ment and marketing model, in particular pointing to
the negligible influence they, as “smaller” customers,
have on how software develops. FOSS is expected to
provide more flexibility and allow more autonomous
input into software development. This can be con-
ceived of as an ownership issue: developing nations
desire an opportunity to articulate their software
needs and participate in the innovation process as end
users of software products. In addition, they welcome
the possibility that an indigenous industry can partici-
pate in both identifying and meeting those software
development needs.

3. Intellectual property rights

With increased emphasis on and pursuit of IPR
enforcement at the international level, the choices
available to software users are becoming more dis-
tinct. As countries move away from the gray options
of software piracy toward a stricter implementation of
standard intellectual property rules, this forces real
choices. While proprietary desktop software is still
largely considered more user-friendly than the alter-
natives, its market penetration and price are not
related in countries where software piracy is com-
monplace. Thus, all efforts by international proprie-
tary software producers to decrease piracy in fact
improve the fundamental conditions for increased
adoption of open-source software.

It should also be kept in mind that, historically, the
basic precondition for the appearance, as a concept,
of IPR and law with regard to creative goods and
services has been the high cost of reproducing the
carrier mediums (printed books, vinyl records, film
stock and magnetic and optical digital media), not the
ability of states and Governments to enforce the
accompanying legislation. Technology has relegated
this condition to history’s dustbin, and Governments
are now faced with acting on their own law, some-
thing that was not a practical consideration until a few
years ago.

Conversely, to think FOSS presents an alternative to
respecting IPR is a gross misunderstanding. In fact,

FOSS requests users to, without exception, respect
the intellectual property of the software’s author(s) as
outlined in the enclosed GPL or OSD license, and it
needs Governments to provide legal protection and
remedy when this is necessary and deserved. The full
text of the GNU General Public License and the cri-
teria for OSD licenses are contained in annexes I and
II of this chapter.

There is a broader issue here for Governments than
simple tolerance (or lack thereof) of a certain degree
of software piracy. The question is what regime for
ownership and distribution of IT tools best serves the
interests of developing countries and of the global
economy as a whole. To think of FOSS as simply a
less expensive alternative to proprietary software
misses an important aspect of what FOSS enables. In
an FOSS environment, the degree to which a soft-
ware tool can be utilized and expanded is limited only
by the knowledge, learning and innovative energy of
the potential users and not by exclusionary property
rights, prices or the power of countries and corpora-
tions.

The current debate often pits proprietary licensing
against the GPL. Commercial software producers
argue that promoting the GPL means locking out any
software development from possible future commer-
cialization. As the previous section indicated, the bulk
of software revenues come from customization, serv-
icing or hardware, or all of the above bundled in solu-
tions. Indeed, IBM did earn $1 billion on the back of
GPL GNU/Linux. Finally, proprietary licensing
allows only the owner to commercialize the intellec-
tual property at stake and makes it inaccessible to any-
one else. Anyone seeking to redistribute a derivative
version of a proprietary programme would be prohib-
ited from doing so under the terms of the license.
Thus, the formal outcome is not that different from
that of the GPL (Lessig 2002). In terms of ICT strat-
egy and its relation to innovation and development,
there have been indications that the proprietary
model may encourage excessive copyrighting and pat-
ent hoarding, with the final outcome being reduced
investment in research and development (R&D)
activities and a decline in innovation as funds for
R&D are redirected towards patent acquisition and
royalty payments (Bessen 2002, Bessen and Hunt
2003).

FOSS presents a significant development opportunity
because of the critical role that users can play in deter-
mining new products and the overall trajectory of
technology evolution. Software innovations can and
should come increasingly from developing countries.

114 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

Developing countries are not implicitly stuck relying
on commoditized, hand-me-down innovation from
the developed world. In an FOSS environment, their
own lead users could push technology development
towards applications that specifically fit local needs
and demands. However, for indigenous demand to be
expressed, users need to understand the possibilities
they have and the ways in which a digital infrastruc-
ture could contribute to their lives.

When those possibilities are evolving as quickly as
they are today, it seems certain that IT consumers
generate demand primarily through a process of
learning by doing.56 With increasing familiarity, users
can gradually come to understand what the technolo-
gies can do for them, and then to imagine new possi-
bilities, provided they are fully aware of their options
and the existing technical options. Thus, an environ-
ment where software is normally used under restric-
tive intellectual property licensing may not be the
most conducive for ICT development and bridging
the digital divide. The empowerment that comes with
free access to source code is not a simple price advan-
tage, but may rather be a necessary economic prereq-
uisite for evolving demand. The applications that find
widespread acceptance and drive technology and
infrastructure deployment forward in developing
economies may certainly come from within those
countries.

H. Policy options for FOSS

There are two general areas of policy implementation
options to be considered by Governments, each with
different public-sector, civil-society and private-sector
dynamics. Each of these potential paths has
constraints or obstacles that developing countries in
particular must be aware of when considering the
various policy options available to them in adopting
FOSS.

• Formal vs. informal approaches: Formal
approaches such as legislation or a government
strategic plan may be weighed against more
informal, flexible approaches to letting FOSS
use evolve without normative patronage.

• Strategy and level of involvement: Strategy
initiatives may be carried out at sub-national,
national or regional levels, and they may also
entail different degrees of involvement, from
awareness building to procurement to funding
of R&D.

These options are not mutually exclusive but rather
represent spectrums along which Governments can
choose to array specific policies or a more general
approach to FOSS use. The relationship between
government, civil society and industry may also be
varied, with initiatives coming in a mixture of
strengths from any given stakeholder. There is no pre-
scription or tried-and-tested scheme: policy makers
will have to consider their national circumstances and
ICT development priorities. This chapter considers
several options and offers examples of applications
throughout the world.

1. Formal involment

A number of Governments have pursued formal
approaches to the adoption of FOSS in the public
sector, considering legislation to mandate the use of
open-source solutions in government applications or
at least seriously consider them as an alternative to
proprietary software. In the industrialized world, this
trend has been strongest in Europe, particularly
France and Germany. The French Parliament pro-
posed a bill concerned with both the use of open
standards and the availability of source code for soft-
ware used by the Government. An Italian bill under
consideration mandates a preference for FOSS in all
government offices, and a Spanish bill requires
regional governments to prefer and promote open-
source products. In April 2002, the administration of
the Spanish district of Extremadura put in place a
plan to switch all computer systems in government
offices, businesses and homes to Linux and FOSS
applications.57 The Government of the United King-
dom has set out policy to consider open-source solu-
tions alongside proprietary ones in IT procurement;
to use products that support open standards and
specifications in all future IT development; to con-
sider obtaining full rights to bespoke and customized
software code for proprietary software it procures;
and to explore further the possibilities of using FOSS
as the default exploitation route for government-
funded R&D software.58

A number of Latin American governments at the
national and local levels have introduced or passed
and introduced legislation on the use of FOSS solu-
tions in the public sector. The Peruvian case was dis-
cussed above. Argentina’s Parliament reviewed a pro-
posal that mandates, with a few exceptions, the use of
FOSS in all government offices and state-owned
enterprises, but the Parliament collapsed in the fiscal
crisis of 2001 before a decision was taken on this bill.
In Brazil, four cities – Amparo, Recife, Ribeirao Pires

E-COMMERCE AND DEVELOPMENT REPORT 2003

CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT 115

and Solonopole – have passed laws giving preference
to or requiring the use of FOSS, and other municipal-
ities and states, as well as the national Government,
have considered similar legislation.

Other countries have taken slightly less formal steps
towards using FOSS in government. France, in addi-
tion to considering legislation, has created an Agency
for Technologies of Information and Communication
in Administration (ATICA), which seeks, among
other things, to encourage the use of free software
and open standards.

A less formal, more flexible approach has its advan-
tages. Foremost of these is the value of allowing the
FOSS phenomenon to develop by itself, along with
the attendant organizational innovation that could
bring. Different user communities have the opportu-
nity, through the open-source process, to come up
with unique and contextually appropriate technologi-
cal and organizational models, building indigenous
commitment and ownership along the way.

It is often argued that Governments do not have an
enviable record of successfully legislating and pro-
moting industrial policy and that thriving software
developments are best left alone (Evans 2002). While
this issue may have some relevance in countries with
developed market economies, within the develop-
ment context one cannot help but wonder whether

the market purist and non-interventionist concepts of
the Washington consensus are for export only. A dif-
ferent issue is, if a Government does decide to adopt
a pro-FOSS legislative bias, how this should be imple-
mented and how formal it should be from a norma-
tive viewpoint.

2. Strategy and direct involvement

Since Governments are important consumers of ICT
in developing countries, their participation is crucial
for the success of any open-source initiative. Govern-
ment can be involved at the level of strategic policy,
building awareness and promoting conscious and
informed choice among its administration as well as
industries and civil society. It may act as a procurer,
and it may directly finance R&D. This section consid-
ers different levels at which Governments can imple-
ment an FOSS strategy.

A good example of high-level strategic thinking is the
case of the Government of South Africa. A council to
consider the use of FOSS was convened in early 2003.
The council delivered an official recommendation
promoting the use of open-source applications when
proprietary alternatives did not offer a compelling
advantage. The recommendations were formulated at
a strategic level and are described in box 4.7. The
advantage of a strategic approach lies in the nature of

Box 4.7

Summary of strategic steps highlighted by South Africa’s government
council on open-source policy

South Africa’s Government Information Technology Officer’s council’s FOSS strategy includes steps to consolidate and expand the capacity
needed to implement and support FOSS solutions, including:

• Provision of information to key decision makers (bearing in mind the need to demonstrate convincingly the security measures and
business principles of FOSS)

• Generation of expert advice on the suitability of FOSS solutions

• Trouble-shooting for newly implemented FOSS solutions

• Software development assistance

• Training for FOSS developers and users (concentrated in existing learning institutions)

• Development of a research programme to enable optimal understanding of and decision making regarding FOSS (built on the networking
nature of the FOSS development model)

• Creation of FOSS support structures (some institutional development will be necessary)

Source: Open Source Software in Government, www.oss.gov.za.

116 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

software provision. As a complex knowledge product,
software requires a technological and social infra-
structure to facilitate its provision. A strategic
approach would allow Governments to work in col-
laboration with donors to map out potential areas for
development assistance, in particular identifying
potential human resource capacity-building and tech-
nical assistance needs.

The report recommends creating strong linkages with
higher education institutions to build a national col-
laborative network that can be extended internation-
ally. It also emphasizes building partnerships within
the public and private sectors and civil society, as well
as regionally within Africa and globally. The strategy
emphasizes the importance of building support
among key stakeholders, including the political level,
senior management, IT professionals and govern-
ment users.

Still at the strategic level but with the stakes raised to
international collaboration, FOSS may have the
potential to generate large economies of scale and
positive spillover effects in regional capacity building
and infrastructure development. A number of regions
have taken steps toward collaborating on FOSS, and
such cooperation has been most pronounced in
Africa. In early 2003, African countries from across
the continent launched the Free and Open Source
Software Foundation for Africa (FOSSFA), an organ-
ization aimed at promoting the use of FOSS through-
out the continent.59 Box 4.8 presents FOSSFA’s rec-
ommendations for formulating a policy regarding
FOSS use.

FOSSFA anticipates that FOSS will provide opportu-
nities to develop local programmes built by Africans
for use in Africa. Regional organizations such as
FOSSFA thus see the development value of open
source in broad terms. An important aspect of such
strategies is to emphasize the capacity-building
dimension associated with open-source technology.
Regional organizations have the potential to work
with educators on a broad scale to introduce open
source into schools where young people can learn to
use, maintain and modify software. The vision for the
future is one of a regional technical revolution of
sorts, in which Governments and the private sector
embrace FOSS and can rely on regionally developed
software and expertise.

As far as practical measures are concerned, a number
of Governments have piloted the deployment of
FOSS in government service delivery agencies at the
subnational level. In South Africa, for example, some

provinces and national departments are using GNU/
Linux and other FOSS applications on a trial basis,
and the Department of Health has implemented an
FOSS health information system in both national and
provincial departments that is now also used in some
other African countries.

Some European Governments have begun shifting
serious national-level support to open source. For
example, France’s ministries of Defense, Culture, and
Economy have shifted to open-source operating sys-
tems. Germany’s Federal Institute for Agriculture and
Food has installed open-source operating systems on
servers and workstations. In Britain, the National
Health Service has adopted an open-source stand-
ard.60

Some developing countries have seen the private sec-
tor taking the initiative in cooperating with the Gov-
ernment in open-source software development. In
India, for example, while government agencies have
begun to explore the potential of FOSS applications,
especially in education, private entrepreneurs have
developed the Simputer, an FOSS-based handheld
device. (See chapter 3 for a discussion of the Sim-
puter.) Collaboration between the public and private
sectors is essential to a successful systematic adoption
of FOSS solutions. The Simputer demonstrates that
innovative private-sector FOSS solutions are possible.
Yet even in this case, the developers anticipated need-
ing government assistance to help disseminate the
device. They realized that the Government would
have to act as a major consumer in order to achieve
the necessary critical mass for popularizing the prod-
uct.

Some countries have more explicitly encouraged col-
laboration between the public and private sectors in
the production and adoption of open-source applica-
tions. Attempting to encourage the continued devel-
opment of the local software industry, the Govern-
ment of Germany has struck a deal with IBM that
offers government offices discounts on IBM comput-
ers with preinstalled GNU/Linux software provided
by the German GNU/Linux distributor SuSE. Singa-
pore, through its Economic Development Board,
which is charged with executing strategies to boost
the Singaporean economy, is offering tax breaks to
companies that use the GNU/Linux operating sys-
tem instead of proprietary alternatives.

Finally, one needs to look at the issue of direct fund-
ing of FOSS project and development needs. A
number of examples are listed in the survey that fol-
lows. An important question is whether, for software

E-COMMERCE AND DEVELOPMENT REPORT 2003

CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT 117

Box 4.8

The Free and Open Source Software Foundation for Africa policy
recommendations for FOSS

In its Action Plan for June 2003 – June 2005, FOSSFA proposes three distinct approaches a Government might take in formulating its FOSS
policy. It argues that any particular country should seek the mix of these approaches that best reflects its ICT and development reality. (See
annex III of this chapter for the text of FOSSFA’s founding statement.)

1. The neutral approach

• Governments can adopt a neutral approach ensuring that choice is supported and discrimination against FOSS is eliminated.
Governments should:

• Adopt policies to ensure that FOSS is carefully considered in IT procurement processes.

• Implement criteria for evaluating open-source products, and procedures for adopting and maintaining open standards.

• Allow open-source software to compete on an equal basis with proprietary alternatives.

• Initiate communication to enhance knowledge and understanding of FOSS.

2. The enabling approach

• In an enabling approach, policies are geared towards creation of the capacity to use FOSS. Governments should, in addition to the neutral
approach:

• Develop the capability to give guidance on selecting and implementing FOSS.

• Promote education and training for the use of FOSS products.

• Support the establishment of partnerships between users and developers.

3. The aggressive approach

In an aggressive approach, Governments actively encourage the development of FOSS through both legislation and policy. Governments
should:

• Actively support FOSS developers’ communities and projects.

• Adopt strategies to increase commitment to open-source products.

• Conduct regular auditing of the impact of FOSS on government service delivery.

• Participate in programmes that can minimize risks associated with FOSS.

• Standardize FOSS where analysis shows it to be the best alternative.

Source: FOSSFA Action Plan 2003-2005, www.fossfa.org/resources.html.

produced with public funds, there should be any pref-
erence for a specific licensing model. Policy makers
should scrutinize the available OSD licenses as well as
the GPL and reflect on the details of the debate
between Microsoft Peru and Peruvian Congressman
Villanueva. While there is sometimes a temptation to
prefer the “copyleft” spirit of the GPL, let it be noted
that the very successful Apache server software and
the BSD operating system are distributed under less
restrictive OSD licenses that actually allow proprie-

tary use of the source code. Yet these programmes
remain the frontrunners in their domains.

3. Examples of FOSS policy action in
developing countries

The following are examples of FOSS use in develop-
ing countries. Where relevant, the policy framework is
described and the main forms of involvement are

118 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

noted. The survey is not comprehensive and is based
on information found by conducting keyword
searches on the Internet.

Argentina61

• A bill “Policy for Free Software Use for the
Federal State” presented to Argentina’s House
of Congress in April 2001 called for mandatory
government use of FOSS. The economic crisis
forced the Government out before a vote
could be taken. A similar bill was submitted in
March 2002 and is under review.

• The current bill proposes FOSS as a compo-
nent of the national campaign against software
piracy.

Brazil62

• Rio Grande do Sul was the first administration
to pass a law making FOSS use mandatory in
both government agencies and non-govern-
ment-managed utilities.

• Four cities in Brazil have passed legislation
requiring preference for “software libre” where
an open-source option is available.

• The national health care system plans to release
10 million lines of source code.

• The first annual Free Software International
Forum was held in Brazil in May 2000.

• In the province of Pernambuco, the world’s
first law regarding the use of open-source soft-
ware was passed in March 2000.

China63

• The Government-supported China Academy
of Science together with Government-owned
Shanghai New Margin Venture Capital estab-
lished Red Flag Linux, a Chinese-language
Linux distribution.

• The Beijing Software Industry Productivity
Center was established by the Beijing municipal
government and has launched a project named
“Yangfan” to improve the performance of
local distributions of GNU/Linux.

• The strong presence of international FOSS
developers, including Turbo Linux, Red Hat
and IBM, is noticeable.

India64

• A growing attraction to Linux in India has per-
suaded Microsoft to share source code with a
particular government body.

• The Simputer was developed by a group of sci-
entists from the Indian Institute of Science and
Encore Software. (See box 3.3 in chapter 3.)

• Government agencies promote the use of
localized solutions such as Indian-language
computing. The Centre for Development of
Advanced Computing and the Department of
Information Technology are supporting the
development of a Hindi GNU/Linux distribu-
tion called Indix.

• The Department of Information Technology
has expressed an intention to introduce Linux
as the de facto standard in academic institu-
tions; research establishments will develop dis-
tributable toolboxes; central and state govern-
ments will be asked to use Linux-based
offerings.

• The West Bengal Electronics Industry Devel-
opment Corp Ltd., the state’s nodal IT body,
has formed a Linux cell to support various gov-
ernment IT projects inside and outside the
state.

• Talks with major FOSS industry players on
joint projects are in progress.

Malaysia65

• The Government committed in November
2001 to using FOSS in key agencies, such as the
Treasury, and in areas such as e-procurement.

• The Malaysian National Computer Confedera-
tion operates an FOSS special interest group.

• The Prime Minister launched the Komnas
(Komputer Nasional) Twenty20 Personal Com-
puter, built on FOSS by the private sector.

• The Malaysia Institute of Electronic Systems,
the ICT advisor to the Government, is pushing
the shift towards FOSS, including an attempt
to build a low-cost PC based on GNU/Linux.

E-COMMERCE AND DEVELOPMENT REPORT 2003

CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT 119

Pakistan66

• The Government Technology Resources
Mobilization Unit has created a “Linux Force”
task force that is expected to help Pakistan
move toward FOSS. This would include fund-
ing for R&D programmes for client software,
training and local-language application devel-
opment.

Peru67

• Congressman Edgar Villanueva has introduced
Bill 1609, “The Use of Free Software in Public
Administration”, to mandate the use of FOSS
in all government systems.

• Congressman Villanueva’s open confrontation
with Microsoft Peru has earned him and Peru
the reputation of being the developing world’s
FOSS radical.

The Philippines68

• Bayanihan Linux, developed under the Open
Source Project of the Advanced Science and
Technology Institute of the Philippines, has
had its second release and is bundled with the
latest office suite, image and text editors, Inter-
net and networking tools and multimedia appli-
cations. Bayanihan is a single-CD installation
tailored to local demand.

Republic of Korea69

• The local company HancomLinux signed a
deal in January 2003 with the country’s Central
Procurement Office to supply the Government
with 120,000 copies of its Linux desktop office
productivity software, HancomOffice. The
open-source software, which is compatible
with Microsoft’s Office applications, including
Word and Excel, is expected to save the Gov-
ernment money in the long run and stimulate
business for local companies competing
against Microsoft in the software industry.

South Africa70

• A Government council convened to consider
the use of FOSS published an official recom-
mendation promoting the use of open-source

applications when proprietary alternatives do
not offer a compelling advantage, and high-
lighted the necessary strategic steps.

• In January 2003, the Government declared that
it would use FOSS and set up a council for sci-
entific and industrial research to help develop
programming skills.

• South Africa has taken the lead in regional col-
laboration on OSS, including the Free and
Open Source Software Foundation for Africa.

Thailand71

• The Government-supported technology devel-
opment group NECTEC has developed a
GNU/Linux distribution for schools and gov-
ernment desktops and servers – the Linux-SIS
(School Internet Server) for servers and the
Linux TLE (Thai Linux Extension) for govern-
ment desktops. The project aims to narrow the
gap between use of pirated and legal software,
and to promote local business development.

Viet Nam72

• Government delegates to a software seminar in
Hanoi concluded that Viet Nam could save
hundreds of millions of dollars annually and
better guarantee information security by
switching to FOSS.

• Vietnamese IT companies are working on
FOSS projects by subcontracting with foreign
companies

• FOSS was included in the National Program on
Information Technology.

I. Conclusions

The Internet, or the rapid introduction into human
affairs of extensive telecommunications bandwidth
configured as a neutral and public network, changes
some very important things about the constraints and
opportunities that individuals, organizations and
countries encounter as they move towards increas-
ingly knowledge-intensive economies. Developing
countries will simultaneously confront new and old
problems: the promise of information-enabled devel-
opment; the challenge of managing complex, techno-

120 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

logically embedded relationships with multinational
firms and the developed world; and the question of
how to configure IPR regimes that are increasingly
crucial pillars of economic growth. The advantages
for developing countries of promoting policy that will
provide a positive environment for open-source IT
are manifold, and any differences in comparison with
the developed world are generally ones of degree, not
of direction.

FOSS is here to stay for the foreseeable future. Expe-
rience so far has shown that open-source environ-
ments often produce reliable, secure and upgradable
software at a relatively low cost. By definition, FOSS
provides an improved approach to security issues and
to the need for public and open standards, a subject
of concern in government institutions. Open source
eliminates the national-level economic loss that other-
wise results from duplication of software develop-
ment, in particular if it has been done in a public or
academic institution. Supporting FOSS can have an
anti-monopolistic effect on the IT market and indus-
try in a country and globally, thereby reducing the
threat of technological and financial lock-in.

Governments, after considering the experience of
those developing and developed countries that have
initiated FOSS policy and activities, should decide
which approach suits their environment best. While
some countries may have large numbers of technically

qualified and interested experts, this may not neces-
sarily be the case throughout the developing world.
Thus, government policy on human resources for
ICT development may need to include an FOSS
agenda. While its low cost does not drive the develop-
ment of FOSS globally, in developing countries it may
well speed adoption, particularly given the increas-
ingly stringent enforcement of IPR demanded by pro-
prietary software producers. Money spent on licenses
may be better used in training ICT experts who can
perform real software development, rather than just
“click on the menu”. Finally, the increasing adoption
of FOSS in the developed world is creating export
opportunities for customized software from nascent
IT industries in developing countries.

Ultimately there are many different ways to manage
the transition to a knowledge or information econ-
omy. But if the production, flow and control of infor-
mation are defining features of a community, an econ-
omy and a society, then the rules that govern
information become foundational. Software is one of
the most important sources of those rules. As with
any set of rules, what matters is not just what the
rules say but how they come to be written and who
can change them under what conditions. FOSS
should be seen, then, as more than just a different
kind of product. It is a different kind of process for
building, maintaining and changing the rules that gov-
ern information flows.

E-COMMERCE AND DEVELOPMENT REPORT 2003

CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT 121

Notes

1. Moving a software programme from the operating system environment in which it was developed to another operating
system environment; writing a version that runs on another system.

2. For a critical evaluation of the data see Tuomi (2002).

3. The competition as indicated by Hoover’s (www.hoovers.com) consists of the following 10 firms in order of revenue
size: Siebel, BMC Software, Novell, Network Associates, Activision, Sage Group, Infosys (Bangalore), Business Objects,
Legato Systems and RSA Security.

4. The term packaged means that the software is written for mass retailing and is not customized for specific user needs.
It typically includes operating systems, utilities, applications and programming languages.

5. See www.businessweek.com/magazine/content/03_02/b3815723.htm.

6. Total revenues for IBM, Sun Microsystems, EMC, Dell, Hewlett-Packard, Gateway, Apple, Fujitsu and NEC approach
$276 billion, but it is difficult to determine what portion comes from software-related activities.

7. This analogy has been attributed to Mitchell Stoltz of Mozilla.org.

8. It may be included in the software package or on the CD-ROMs, or it may be posted on the Internet and its location
(URL) indicated.

9. A frequently asked question is why software developers would choose to share source code in this unprotected, non-
proprietary fashion. This discussion has a number of economic and sociological aspects and is discussed in some detail
in section F of this chapter.

10. The implied meaning of “Fordist” has its origins in Adam Smith’s discussions on the division of labour. The manufac-
turing process for any product can be broken down into steps, and having each worker specialize in one of these steps
leads to substantial productivity gains. The approach was perfected in Ford’s automotive factories, thus the term.

11. One of the most pervasive and detrimental legacies of the Internet hype of the late 1990s was the popularity of an over-
simplified idea of “self-organization”. New technologies seemed to be undermining or at least presenting alternatives to
traditional command-and-control hierarchies in business, government and elsewhere.

12. Ken Thompson is usually given credit for being the “inventor” of UNIX and Dennis Ritchie is given credit for C. Both
were employees of Bell Labs.

13. The group at the University of California at Berkeley was particularly influential. Bill Joy, who would go on to found Sun
Microsystems, headed the first Berkeley Software Distribution (BSD) project of UNIX in 1978.

14. This case would drag on for 13 years before finally being dismissed by the Reagan administration in 1981. See DeLama-
rter (1986).

15. In Stallman’s view, “the sharing of recipes is as old as cooking”, but proprietary software meant “that the first step in
using a computer was a promise not to help your neighbor”. He saw this as “dividing the public and keeping users help-
less” (1999, p. 54). For a fuller statement see www.gnu.org/philosophy/why-free.html.

16. For a description of GNU see box 4.1 in the text.

17. GNU.org, at www.gnu.org/licenses/gpl.html.

18. There have been several modifications to these specific provisions, but the general principle is unchanged.

19. In the Acknowledgements section of the Open Sources: Voices from the Open Source Revolution (1999) omnibus,
Emacs is described at some length: “Calling Emacs editor an editor is like calling the Earth a nice hunk of dirt. Emacs
is an editor, a web browser, a news reader, a mail reader, a personal information manager, a typesetting program, a pro-
gramming editor, a hex editor, a word processor, and a number of video games. Many programmers use a kitchen sink
as an icon for their copy of Emacs. There are many programmers who enter Emacs and don’t have to do anything else
on the computer. Emacs, you’ll find, isn’t just a program, but a religion, and RMS (Richard M. Stallman) is its saint.”

20. See http://gcc.gnu.org for more details.

21. See http://sources.redhat.com/gdb/ for more details.

122 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

22. See http://opensource.org/osd.html for more details.

23. “We think the economic self-interest arguments for Open Source are strong enough that nobody needs to go on any
moral crusades about it”. See www.opensource.org for more details.

24. Gomes L (1998), Microsoft acknowledges growing threat of free software for popular functions, Wall Street Journal, 3
November: B6; and the “Halloween Memo”, at GNU/Linux.miningco.com/library/blhalloween.html.

25. An unauthorized text of the so-called Halloween Memo can be found in unabridged format at www.scripting.com/
misc/halloweenMemo.html. The OSI has posted the leaked version of the memo with commentary at www.open-
source.org/halloween/halloween1.php. The OSI reported that the Microsoft Halloween Memo explicitly stated:

“OSS is long term credible…. [because] the real key to GNU/Linux isn’t the static version of the product but the process
around it. This process lends credibility and an air of future-safeness to customer GNU/Linux investments. GNU/
Linux has been deployed in mission critical, commercial environments with an excellent pool of public testimonials….
Recent case studies provide very dramatic evidence that commercial quality can be achieved/exceeded by OSS projects.
The Internet provides an ideal, high visibility showcase for the OSS world. The ability of the OSS process to collect and
harness the collective IQ of thousands of individuals across the Internet is simply amazing. More importantly, OSS evan-
gelization scales with the size of the Internet much faster than [Microsoft’s] evangelization efforts appear to scale.”

In 2002 and 2003 Microsoft began experimenting with allowing limited viewing of its source code to large customers
and Governments that in particular may wish to audit for security concerns, under particular agreements relating to non-
disclosure and non-competition.

26. See note 3.

27. For a discussion of an empirical test of bugginess that compares FOSS and a proprietary platform, see Kuan (2003).

28. See www.computerworld.com.au/index.php?id=2110919358&fp=16&fpid=0 .

29. Market share numbers for software should always be read cautiously, as sampling and measurement issues complicate
any straightforward assessment of who is actually using what software in these highly distributed markets. The data dis-
cussed here come primarily from industrialized counties. Market share data for developing countries are not currently
available.

30. E-soft, www.securityspace.com/s_survey/data/200303/index.html.

31. Operating systems perform basic tasks, such as recognizing input from the keyboard, sending output to the display
screen, keeping track of files and directories on the disk, and controlling peripheral devices such as disk drives and print-
ers. Most computer users are familiar only with the Microsoft Windows operating system.

32. See www.netcraft.com/Survey/index-200106.html#computers; see also www.oss-institute.org/reference.html.

33. See www.businesswire.com/cgi-bin/f_headline.cgi?bw.111301/213170209.

34. See www.dwheeler.com/oss_fs_why.html.

35. Berkeley Software Distribution.

36. This concession comes from the letter that Microsoft addressed to Peruvian Congressman Edgar Villanueva, arguing
against his ambition to legally designate FOSS a preferred option for government procurement.

37. See www.eweek.com/article2/0,3959,840669,00.asp for more details.

38. More precisely, consumption of a non-rival good by one consumer does not decrease its utility for another consumer.
Non-excludability implies that it is difficult, if not impossible, to charge people money for the use of the good, much as
for breathing air or walking through a public park. Public goods are those that satisfy both the criteria of non-rivalry and
non-excludability.

39. Full results are at www.psychologie.uni-kiel.de/GNU/Linux-study/. The three most important gains (all scoring 4.6 on
a scale of 1 (very unimportant) to 5 (very important)) were “having fun programming”, “improving my programming
skills”, and “facilitating my daily work due to better software.” “Lack of payment” was much less important (2.2); “time
lost due to my involvement in GNU/Linux was a bit more important” (2.6).

E-COMMERCE AND DEVELOPMENT REPORT 2003

CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT 123

40. The Boston Consulting Group Hacker Survey, Release 0.3. was presented at GNU/LinuxWorld on 31 January 2002;
www.bcg.com/opensource/BCGHACKERSURVEY.pdf . BCG surveyed a random selection of developers from
SourceForge; the results are based on 526 respondents (a 34.2% response rate).

41. See Berlecon/III (2002), Part 4.

42. Any participating developer can express an opinion by casting a vote on any issue facing the project, but only the votes
of Apache Group members are binding. Code changes require a minimum of three positive votes and no negative votes;
vetoes are expected to carry with them a convincing explanation. Other decisions require a minimum of three positive
votes and an overall majority in favor. Election to the Apache Group is on the principle of a peer-based meritocracy:
someone who does a lot of good work on a piece of the code may be nominated by a member of the group and added
to the group by a unanimous vote of existing members. Interview with Apache Group members; Fielding (1999).

43. For more details browse www.apache.org.

44. For more on the South African position see Government IT Officers Council of South Africa (2002), Using Open
Source Software in Government; and National Advisory Council on Innovation of South Africa (2002), Open Software
and Open Standards in South Africa.

45. See http://tdil.mit.gov.in/ with a link to Indix (the Hindi version of GNU/Linux); see also www.crn-india.com/fea-
tures/stories/39090.html and www.zdnetindia.com/techzone/linuxcentre/stories/70365.html.

46. See www.redflag-linux.com/.

47. For more information see www.pernambuco.com/tecnologia/arquivo/softlivre1.html.

48. See www.wikipedia.org/wiki/Open_content for a list of open content projects and links.

49. See www.lightandmatter.com/article/article.html.

50. See www.sanger.ac.uk/HGP/.

51. See www.oreillynet.com/pub/a/network/2002/04/05/kent.html and www.wired.com/news/medtech/
0,1286,46154,00.html for more details.

52. See http://bioinformatics.org/.

53. See www.newamerica.net/index.cfm?pg=article&pubID=901 and www.cellularsignaling.org/.

54. Programming that secretly gathers information about a computer’s user and sends it to advertisers or other interested
parties.

55. For the detailed text see www.theregister.co.uk/content/4/25157.html and www.pimientolinux.com/peru2ms/.

56. See Bar F and Borrus M (1998), The path not yet taken: User-driven innovation and U.S. telecommunications policy,
Fourth Annual CRTPS Conference, University of Michigan Business School, Ann Arbor, Michigan, 5–6 June.

57. For more information see the Extreamadura FOSS site www.linex.org or refer to The Washington Post (2002), Europe’s
Microsoft alternative: Region in Spain abandons windows, embraces Linux (3 November) and Wired, Extremadura
measures: Linux, at www.wired.com/news/business/0,1367,51994,00.html.

58. Office of the E-Envoy, Open Source Software Use in UK Government, www.e-envoy.gov.uk/oee/oee.nsf/sections/
frameworks-oss-policy/$file/oss-policy.htm.

59. See www.fossfa.org.

60. For more details see ZDNet at http://news.zdnet.co.uk/story/0,,t269-s2121266,00.html.

61. See www.lugcos.org.ar/serv/mirrors/proposicion/proyecto/leyes/#ref.#1.

62. See www.softwarelivre.org/index.php?menu=projeto and www.pernambuco.com/tecnologia/arquivo/
softlivre1.html.

63. See www.redflag-linux.com/eindex.html and www.bsw.gov.cn.

64. See www.zdnetindia.com/techzone/enterprise/stories/74137.html;
www.simputer.org/simputer/;
http://rohini.ncst.ernet.in/indix/;

124 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

http://economictimes.indiatimes.com/cms.dll/xml/uncomp/articleshow?artid=24598339;
www.zdnetindia.com/news/national/stories/71697.html; and
http://ebb.antville.org/stories/362705/.

65. See http://asia.cnet.com/newstech/systems/0,39001153,39071821,00.htm;
http://star-techcentral.com/tech/story.asp?file=/2002/9/9/technology/09oss&sec=technology;
www.mncc.com.my/oscc/oscc-main.html; and
http://opensource.mimos.my/.

66. See www.tremu.gov.pk/task/Linux.htm.

67. See http://odfi.org/archives/000004.html#4.

68. See http://bayanihan.asti.dost.gov.ph/.

69. See http://en.hancom.com/index.html.

70. See www.oss.gov.za/.

71. See www.nectec.or.th/linux-sis/.

72. See www.idg.com.sg/idgwww.nsf/unidlookup/21744381DA98B64148256CA80007772E?OpenDocument.

References and Bibliography

Berinato S (1999). Catering to the GNU/Linux Appetite. PC Week, 7 June: 103.

Berinato S (2000). GNU/Linux Graduates to Mainframes. Industry Standard, 17 May.

Berlecon Research and the International Institute of Infonomics (III), University of Maastricht (2002). Free/Libre and Open
Source Software: Survey and Study. http://www.infonomics.nl/FLOSS

Bessen J (2002). What good is free software? In: Hahn R, ed. (2002). Government Policy toward Open Source Software.
Washington, DC, AEI-Brookings Joint Center for Regulatory Studies.

Bessen J and Hunt R (2003). An empirical look at software patents. Research on Innovation.
www.researchoninnovation.org

Business Week (2003). The GNU/Linux uprising. 3 March.

CNET (2000). IBM to join in GNU/Linux supercomputing effort. 21 March.

DeLamarter RT (1986). Big Blue: IBM’s Use and Abuse of Power. New York, Dodd, Mead.

Evans SD (2002). Politics and programming: Government preferences for promoting open source software. In: Hahn R, ed.
(2002). Government Policy toward Open Source Software. Washington, DC, AEI-Brookings Joint Center for
Regulatory Studies.

Fielding RT (1999). Shared leadership in the Apache Project. Communications of the ACM 42 (2): 42–43.

Free Software Foundation) (FSF) (1991). GNU General Public License, v. 2.0. www.gnu.org/copyleft/gpl.html

Free Software Foundation (FSF) (1996). The free software definition. www.fsf.org/philosophy/free-sw.html

Ghosh RA (1998). Cooking pot markets: An economic model for the trade in free goods and services on the Internet. First
Monday 3 (3).

Goldhaber MH (1997). The attention economy and the Net. First Monday 2 (4).

Holmström B (1999). Managerial incentive problems: A dynamic perspective. Working Paper 6875. Cambridge, MA,
National Bureau of Economic Research.

E-COMMERCE AND DEVELOPMENT REPORT 2003

CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT 125

Iannacci F (2002). The economics of open-source networks. Communications & Strategies 48. International
Telecommunications Society.

Keats D (2003). Collaborative development of open content: A process model to unlock the potential for African
universities. First Monday 8 (2). www.firstmonday.dk/issues/issue8_2/keats/

Kuan J (2003). Open source software as lead user’s make or buy decision: A study of open and closed source quality. Paper
presented at the second conference on “The Economics of the Software and Internet Industries”, Toulouse, France,
17–18 January.

Lancashire D (2001). Code, culture and cash: The fading altruism of open source development. First Monday 6 (12).

Lerner J and Tirole J (2000). The simple economics of open source. Working Paper 7600. Cambridge, MA, National Bureau
of Economic Research.

Lerner J and Tirole J (2001). The open source movement: Key research questions. European Economic Review 45.

Lessig L (2002). Open source baselines: Compared to what? In: Hahn R, ed. (2002). Government Policy toward Open
Source Software. AEI-Brookings Joint Center for Regulatory Studies, Washington, DC.

Open Sources: Voices from the Open Source Revolution (1999). DiBona C, Ockman S and Stone M, eds. O’Reilly &
Associates, Sebastopol, CA.

Pappas Johnson J (2001). Economics of open source software. F/OSS, Massachusetts Institute of Technology.
http://opensource.mit.edu/

Raymond ES (1999a). The revenge of the hackers. In: Open Sources: Voices from the Open Source Revolution.

Raymond ES (1999b). The magic cauldron. At http://www.catb.org/~esr/writings/magic-cauldron/.

Raymond ES (2000). The cathedral and the bazaar. www.catb.org/~esr/writings/cathedral-bazaar/

Stallman R (1999). The GNU operating system and the free software movement. In: Open Sources: Voices from the Open
Source Revolution.

Stallman R (2002). Free as in freedom. Ongoing. www.oreilly.com/openbook/freedom/

Tuomi I (2002). The lives and death of Moore’s Law. First Monday 7 (11).

Weber S (2000). The political economy of open source software. Working Paper 140. Berkeley Round Table on the
Information Economy. http://brie.berkeley.edu/~briewww/research/workingpapers.htm

126 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

ANNEX I

The text of the GNU General Public License is reproduced here in the form in which it appeared on the Free
Software Foundation site http://www.gnu.org/licenses/gpl.txt on 13 August 2003.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the
GNU General Public License is intended to guarantee your freedom to share and change free software – to make
sure the software is free for all its users. This General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License instead.) You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this service
if you wish), that you receive source code or can get it if you want it, that you can change the software or use
pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to
surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients
all the rights that you have. You must make sure that they, too, receive or can get the source code. And you must
show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you
legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no
warranty for this free software. If the software is modified by someone else and passed on, we want its recipients
to know that what they have is not the original, so that any problems introduced by others will not reflect on the
original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program proprietary.
To prevent this, we have made it clear that any patent must be licensed for everyone's free use or not licensed at
all.

The precise terms and conditions for copying, distribution and modification follow.

E-COMMERCE AND DEVELOPMENT REPORT 2003

CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT 127

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

AND MODIFICATION

This License applies to any program or other work which contains a notice placed by the copyright holder saying
it may be distributed under the terms of this General Public License. The “Program”, below, refers to any such
program or work, and a “work based on the Program” means either the Program or any derivative work
under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter, translation is included without limitation in
the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside its
scope. The act of running the Program is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on
the Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under
the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program under these conditions, and telling the
user how to view a copy of this License. (Exception: if the Program itself is interactive but does not
normally print such an announcement, your work based on the Program is not required to print an
announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived
from the Program, and can be reasonably considered independent and separate works in themselves, then this
License, and its terms, do not apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program, the distribution of the
whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on the
Program.

128 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based
on the Program) on a volume of a storage or distribution medium does not bring the other work under the scope
of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation and installation of the executable. However,
as a special exception, the source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically
terminate your rights under this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms and
conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this License and any other pertinent obligations,
then as a consequence you may not distribute the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to refrain entirely from distribution of the
Program.

E-COMMERCE AND DEVELOPMENT REPORT 2003

CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT 129

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of
the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license practices. Many people have made generous
contributions to the wide range of software distributed through that system in reliance on consistent application
of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copy-
righted interfaces, the original copyright holder who places the Program under this License may add an explicit
geographical distribution limitation excluding those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates the limitation as if written in the body of this
License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License
which applies to it and “any later version”, you have the option of following the terms and conditions either of
that version or of any later version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our decision will be
guided by the two goals of preserving the free status of all derivatives of our free software and of promoting the
sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

130 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to
achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to
most effectively convey the exclusion of warranty; and each file should have at least the “copyright” line and a
pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.> Copyright©
<year> <name of author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

 Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright© year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free
software, and you are welcome to redistribute it under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public
License. Of course, the commands you use may be called something other than `show w' and `show c'; they could
even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright
disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes
passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications with
the library. If this is what you want to do, use the GNU Library General Public License instead of this License.

E-COMMERCE AND DEVELOPMENT REPORT 2003

CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT 131

Annex II

The text of the Open Source Definition is reproduced here in the form in which it appeared on the Open Source
Initiative site http://www.opensource.org/docs/definition.php on 13 August 2003.

The Open Source Definition
Version 1.9

The indented, italicized sections below appear as annotations to the Open Source Definition (OSD) and are not
a part of the OSD.

Introduction

Open source doesn't just mean access to the source code. The distribution terms of open-source software must
comply with the following criteria:

1. Free Redistribution

The license shall not restrict any party from selling or giving away the software as a component of an aggregate
software distribution containing programs from several different sources. The license shall not require a royalty
or other fee for such sale.

Rationale: By constraining the license to require free redistribution, we eliminate the temptation to
throw away many long-term gains in order to make a few short-term sales dollars. If we didn't do
this, there would be lots of pressure for cooperators to defect.

2. Source Code

The program must include source code, and must allow distribution in source code as well as compiled form.
Where some form of a product is not distributed with source code, there must be a well-publicized means of
obtaining the source code for no more than a reasonable reproduction cost–preferably, downloading via the
Internet without charge. The source code must be the preferred form in which a programmer would modify the
program. Deliberately obfuscated source code is not allowed. Intermediate forms such as the output of a
preprocessor or translator are not allowed.

Rationale: We require access to un-obfuscated source code because you can't evolve programs
without modifying them. Since our purpose is to make evolution easy, we require that modification
be made easy.

3. Derived Works

The license must allow modifications and derived works, and must allow them to be distributed under the same
terms as the license of the original software.

Rationale: The mere ability to read source isn't enough to support independent peer review and
rapid evolutionary selection. For rapid evolution to happen, people need to be able to experiment
with and redistribute modifications.

4. Integrity of the Author's Source Code

The license may restrict source-code from being distributed in modified form only if the license allows the
distribution of “patch files” with the source code for the purpose of modifying the program at build time. The

132 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

license must explicitly permit distribution of software built from modified source code. The license may require
derived works to carry a different name or version number from the original software.

Rationale: Encouraging lots of improvement is a good thing, but users have a right to know who is
responsible for the software they are using. Authors and maintainers have reciprocal right to know
what they're being asked to support and protect their reputations.

Accordingly, an open-source license must guarantee that source be readily available, but may require
that it be distributed as pristine base sources plus patches. In this way, “unofficial” changes can be
made available but readily distinguished from the base source.

5. No Discrimination against Persons or Groups

The license must not discriminate against any person or group of persons.

Rationale: In order to get the maximum benefit from the process, the maximum diversity of
persons and groups should be equally eligible to contribute to open sources. Therefore we forbid any
open-source license from locking anybody out of the process.

Some countries, including the United States, have export restrictions for certain types of software. An
OSD-conformant license may warn licensees of applicable restrictions and remind them that they are
obliged to obey the law; however, it may not incorporate such restrictions itself.

6. No Discrimination against Fields of Endeavor

The license must not restrict anyone from making use of the program in a specific field of endeavor. For example,
it may not restrict the program from being used in a business, or from being used for genetic research.

Rationale: The major intention of this clause is to prohibit license traps that prevent open source
from being used commercially. We want commercial users to join our community, not feel excluded
from it.

7. Distribution of License

The rights attached to the program must apply to all to whom the program is redistributed without the need for
execution of an additional license by those parties.

Rationale: This clause is intended to forbid closing up software by indirect means such as requiring
a non-disclosure agreement.

8. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the program's being part of a particular software
distribution. If the program is extracted from that distribution and used or distributed within the terms of the
program's license, all parties to whom the program is redistributed should have the same rights as those that are
granted in conjunction with the original software distribution.

Rationale: This clause forecloses yet another class of license traps.

9. The License Must Not Restrict Other Software

The license must not place restrictions on other software that is distributed along with the licensed software. For
example, the license must not insist that all other programs distributed on the same medium must be open-source
software.

E-COMMERCE AND DEVELOPMENT REPORT 2003

CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT 133

Rationale: Distributors of open-source software have the right to make their own choices about their
own software.

Yes, the GPL is conformant with this requirement. Software linked with GPLed libraries only
inherits the GPL if it forms a single work, not any software with which they are merely distributed.

10. The License Must Be Technology-Neutral

No provision of the license may be predicated on any individual technology or style of interface.

Rationale: This provision is aimed specifically aimed at licenses which require an explicit gesture of
assent in order to establish a contract between licensor and licensee. Provisions mandating so-called
"click-wrap" may conflict with important methods of software distribution such as FTP download,
CD-ROM anthologies, and Web mirroring; such provisions may also hinder code re-use. Conformant
licenses must allow for the possibility that (a) redistribution of the software will take place over
non-Web channels that do not support click-wrapping of the download, and that (b) the covered code
(or re-used portions of covered code) may run in a non-GUI environment that cannot support popup
dialogues.

134 CHAPTER 4: FREE AND OPEN-SOURCE SOFTWARE: IMPLICATIONS FOR ICT POLICY AND DEVELOPMENT

E-COMMERCE AND DEVELOPMENT REPORT 2003

Annex III

Statement of the Free and Open Source Software Foundation for Africa (FOSSFA)

The text is reproduced here in the form in which it appeared at http://www.prepcom.net/wsis/1046170300 on
13 August 2003.

Preamble

The potential of open source will improve productivity and quality of life in developing countries. The process of
transformation into information societies requires the full participation of all member states.

Vision

Our vision is to promote sustainable, viable and cost-effective software products for Africa through education
and local capacity building.

Principles

Africa should investigate how to leverage the opportunities presented by the emergence of open-source software
in the context of limited financial resources and expertise.

Specifics

Africa can bridge the “digital divide” by adopting open source, thus narrowing the effect of techno-colonialism.

Plan of action

It is envisaged FOSSFA, in partnership with Governments, intergovernmental organizations, civil societies and
other stakeholders, will spearhead initiatives that build skills through education and empowerment of women and
youth.

Lobby all stakeholders to adopt open source as the platform to engineer solutions that meet the needs of the
people.

Strategies

FOSSFA will:

iii. Create an awareness of free software and open source in Africa.
iii. Build capacity in free software and open source.
iii. Develop a knowledge warehouse of expertise in Africa.
iv. Develop the African Open Source Portal.

We intend to achieve these by:

iii. Lobbying key organs such as Africa Union, UNECA, UNDP, Agence la Francophonie and NEPAD
among others to support open-source development in Africa.

iii. Leveraging various free and open-source capacities and resources in Africa.
iii. Lobbying donor governments and other institutions to tie ICT funding to free and open-source

software.
iv. Lobbying African governments to adopt free and open-source software.
v. Promoting open-source capacity and skill development in Africa through education with emphasis on

women and youth.

